Связь вектора поляризации со связанными зарядами — справочник студента

Рассмотрим плоскопараллельный слой однородного изотропного диэлектрика находящийся в однородном электрическом поле, созданном в вакууме. Пусть вектор напряженности поля составляет угол Q с нормалью. В однородном изотропном диэлектрике вектор поляризации будет направлен по вектору напряженности (рис.39).

Связь вектора поляризации со связанными зарядами - Справочник студента Связь вектора поляризации со связанными зарядами - Справочник студента

РИС.39 РИС.40

В результате поляризации на гранях диэлектрика появятся поляризационные заряды с поверхностной плотностью :

Связь вектора поляризации со связанными зарядами - Справочник студента
Связь вектора поляризации со связанными зарядами - Справочник студента
Связь вектора поляризации со связанными зарядами - Справочник студента

Поверхностная плотность связанных зарядов равна проекции вектора поляризации на направление нормали к поверхности диэлектрика. Физический смысл этой величины в том, что она равна величине заряда, который смещается через единичную площадку в направлении нормали к ней.

Связь вектора поляризации со связанными зарядами - Справочник студента

Рассмотрим случай диэлектрика с неполярными молекулами, хотя полученные результаты будут справедливы для всех изотропных диэлектриков. Выделим некоторый объем в диэлектрике, ограниченный поверхностью S (рис.40).

Из рис.40 видно, что через те участки поверхности, где напряженность направлена вовнутрь, часть отрицательных зарядов покинет рассматриваемый объем, а через участки, где напряженность направлена наружу, в область войдет дополнительно отрицательный заряд.

Если вошедший и вышедший заряды не равны друг другу, то внутри области

появится объемный поляризационный заряд , а на ее поверхности – поверхностный поляризационный заряд .

Связь вектора поляризации со связанными зарядами - Справочник студента
Связь вектора поляризации со связанными зарядами - Справочник студента
Связь вектора поляризации со связанными зарядами - Справочник студента
Связь вектора поляризации со связанными зарядами - Справочник студента

  • Теорема Остроградского-Гаусса для вектора поляризации: поток вектора поляризации через любую замкнутую поверхность равен полному поляризационному заряду внутри этой поверхности, взятому с противоположным знаком.
  • В дифференциальной форме: или
  • Физический смысл этого выражения в том, что источниками линий вектора поляризации являются только связанные заряды.
  • При поляризации диэлектрика поверхностные поляризационные заряды возникают всегда, а объемные поляризационные заряды могут возникать только в неоднородных диэлектриках или в неоднородных полях.

Источник: https://www.webpoliteh.ru/17-vektor-polyarizacii-i-svyazannye-zaryady/

Типы поляризации диэлектрика

  • Связь вектора поляризации со связанными зарядами - Справочник студента
  • В отсутствие электрического поля
  • Связь вектора поляризации со связанными зарядами - Справочник студента
  • При наличии электрического поля
  • Связь вектора поляризации со связанными зарядами - Справочник студента

Связь вектора поляризации со связанными зарядами - Справочник студента

Связь вектора поляризации со связанными зарядами - Справочник студента Вектор поляризации (Поляризованность) P– векторная характеристика поляризации вещества, равная сумме дипольных моментов молекул вещества, занимающего единичный объём.

Дипольный момент молекулы параллелен и пропорционален напряжённости электрического поля:

Связь вектора поляризации со связанными зарядами - Справочник студента Связь вектора поляризации со связанными зарядами - Справочник студента где β поляризуемостьмолекулы. Связь вектора поляризации со связанными зарядами - Справочник студента здесь N – число молекул, n – концентрация. Обозначим Связь вектора поляризации со связанными зарядами - Справочник студентадиэлектрическая восприимчивость вещества; Связь вектора поляризации со связанными зарядами - Справочник студента

В поляризованном диэлектрике на его краях образуются связанные заряды. Каждый из связанных зарядов входит в состав диполя. σсв— поверхностная плотность связанных зарядов. Установим связь между поверхностной плотностью связанных зарядов (σсв) и вектором поляризации( ⃗P ). Вид сбоку на пластину диэлектрика. ⃗Eпластине

  1. В общем случае σсв =Pn
  2. Поверхностная плотность связанных зарядов равна проекции вектора поляризации на
  3. внешнюю нормаль (Pn) к поверхности диэлектрика.
  4. Теорема Остроградского-Гаусса для вектора Р: поток поляризованности сквозь произвольную замкнутую поверхность равен сумме связанных зарядов, охваченной этой поверхностью, взятой с обратным знаком.

Сторонние и связанные заряды диэлектрика. Вывод теоремы Остроградского-Гаусса для поля в диэлектрике. Вектор электрического смещения н его связь с напряженностью поля. Диэлектрическая проницаемость вещества. Третье уравнение Максвелла.

Сторонние заряды – это заряды, расположенные за пределами диэлектрика, а также заряды, которые хотя и находятся в пределах диэлектрика, но не входят в состав его молекул.

Связанные заряды – это заряды, входящие в состав атомов и молекул диэлектрика. Под действием поля они могут лишь немного смещаться из своих положений равновесия. Плотность связанных зарядов равна по абсолютной величине проекции поляризованности на направление внешней нормали рассматриваемой поверхности

  • ТеоремаОстроградского-Гаусса утверждает: поток вектора напряженности электростатического поля через произвольную замкнутую поверхностьпрямо пропорционален алгебраической сумме свободных зарядов, расположенных внутри этой поверхности.
  • электрическое смещение (электрическая индукция);
  • — теорема Остроградского-Гаусса для электрического смещения: поток вектора электрического смещения сквозь произвольную замкнутую поверхность равен сумме свободных зарядов, охваченных этой поверхностью.
  • D – это вспомогательная векторная характеристика электрического поля, помогающая расчёту E.Связь напряженности (Е) и вектора электрического смещения (D)
  • Где ε- Относительнаядиэлектри́ческаяпроница́емость среды.

Относительнаядиэлектри́ческаяпроница́емость среды — физическая величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая, во сколько раз сила взаимодействия двух электрических зарядов в этой среде меньше, чем в вакууме. Значение ε вакуума равно единице, для реальных сред ε > 1. Для воздуха и большинства других газов в нормальных условиях значение ε близко к единице в силу их низкой плотности. Электрическая постояннаяε0 ≈ 8.85·10−12 Ф/м

Третье уравнение Максвелла определяет источники электрического поля. Физический смысл этого уравнения состоит в том, что электрическое поле в некоторой области пространства связано с электрическим зарядом внутри этой поверхности.

Дата добавления: 2016-07-05; просмотров: 2788;

Источник: https://poznayka.org/s29842t1.html

Вектор поляризации. Его связь с поверхностной плотностью связанных зарядов

⇐ ПредыдущаяСтр 26 из 42Следующая ⇒

 Вектор поляризации.
Количественное описание производится с помощью вектора
поляризации. Когда внешнего поля нет, суммарный дипольный момент

Связь вектора поляризации со связанными зарядами - Справочник студента

равен нулю (исключение составляют сегнетоэлектрики, электреты). Под влиянием внешнего электрического поля возникает поляризация, которую характеризуем дипольным моментом единицы объема — вектором

поляризации P :
p
V
P  (2.2.1)
V
Здесь p дипольный момент молекулы. Размерность вектора поляризации равна P q , которая
L2

Связь вектора поляризации со связанными зарядами - Справочник студента

совпадает с размерностью напряженности электрического поля.

Естественно, что вектор поляризации зависит от внешнего поля, как и наведенный поляризационный заряд (связанный). Поляризация приводит к появлению индукционного связанного заряда на поверхности, а иногда и в объеме. Вектор поляризации зависит от связанного заряда.

Связь между вектором поляризации и поверхностной плотностью заряда.

Рассмотрим диэлектрик, имеющий форму косого параллелепипеда, и поместим его в однородное электрическое поле E (рис. 2.4). На боковых гранях появятся поляризационные заряды с плотностью '.

Если S — площадь боковой грани, то диэлектрик приобретает дипольный момент, равный ' Sl , где l -вектор длины параллелепипеда, направленный вдоль электрического поля или, что то же, от отрицательных зарядов к положительным.

Тогда вектор поляризации равен:

P  S l (2.2.2)
V
Здесь объем параллелепипеда определяется как
S – +
E V  SlCos, который можно выразить через
n S + скалярное произведение вектора нормали к
E + боковой грани и вектора l :
V  S l ,n (2.2.3)
+ n
Умножим (2.2.2) скалярно на вектор нормали и,
l воспользовавшись (2.2.3), получим:
S
Рис. 2.4. Pn  l ,n (2.2.4)
V
Читайте также:  Индивидуальный стиль деятельности педагога - справочник студента

Связь вектора поляризации со связанными зарядами - Справочник студента Итак, получаем связь между поверхностной плотностью поляризационного заряда и нормальной

составляющей вектора поляризации Pn:
 Pn  Pn (2.2.5)

Это соотношение справедливо как для положительного, так и отрицательного зарядов. Отметим, что можно интерпретировать уравнение (2.2.5) следующим образом: связанный заряд на поверхности появляется при включении внешнего поля как заряд проходящий (смещаемый) изнутри объема через его поверхность.

⇐ Предыдущая21222324252627282930Следующая ⇒

Рекомендуемые страницы:

Источник: https://lektsia.com/15xb878.html

Диэлектрики в электрическом поле. Классификация, связанные заряды, вектор поляризованности. Связь между диэлектрической проницаемостью и восприимчивостью, связанными зарядами и поляризованностью

Связанные заряды. В результате процесса поляризации в объеме (или на поверхности) диэлектрика возникают нескомпенсированные заряды, которые называются поляризационными, или связанными.

Частицы, обладающие этими зарядами, входят в состав молекул и под действием внешнего электрического поля смещаются из своих положений равновесия, не покидая молекулы, в состав которой они входят. Связанные заряды характеризуют поверхностной плотностью . Выделим в поляризованном диэлектрике наклонную призму с основанием S и ребром L, параллельным вектору поляризации P (рис. 2.4). В результате поляризации на одном из оснований призмы появятся отрицательные заряды с поверхностной плотностью , а на другой положительные заряды с плотностью . С макроскопической точки зрения, рассматриваемый объем эквивалентен диполю, образованному зарядами и , которые отстоят друг от друга на расстояние L, тогда электрический момент призмы равен .

С другой стороны, электрический момент единицы объема равен Связь вектора поляризации со связанными зарядами - Справочник студента , где — угол, между направлением нормали к основанию призмы и вектором P. Произведение есть объем призмы.

Приравняв друг к другу оба выражения для электрического момента, получаем, что поверхностная плотность связанных зарядов равна нормальной составляющей вектора поляризации:

Связь вектора поляризации со связанными зарядами - Справочник студента

  • где n — единичный вектор нормали к поверхности диэлектрика.
  • Если вектор поляризации P различен в разных точках объема диэлектрика, то в диэлектрике возникают объемные поляризационные заряды, объемная плотность которых .

Электрическое поле в диэлектрике. Рассмотрим плоский однородный диэлектрический слой, расположенный между двумя разноименно заряженными плоскостями (рис. 2.5). Пусть напряженность электрического поля, которое создается этими плоскостями в вакууме, равна ,

где — поверхностная плотность зарядов на пластинах (эти заряды называют свободными). Под действием поля диэлектрик поляризуется, и на его гранях появляются поляризационные или связанные заряды. Эти заряды создают в диэлектрике электрическое поле , которое направлено против внешнего поля .

  1. ,
  2. где — поверхностная плотность связанных зарядов. Результирующее поле внутри диэлектрика
  3. .

Поверхностная плотность связанных зарядов меньше плотности свободных зарядов, и не все поле E0 компенсируется полем диэлектрика: часть линий напряженности проходит сквозь диэлектрик, другая часть обрывается на связанных зарядах (рис. 2.5). Вне диэлектрика . Следовательно, в результате поляризации поле внутри диэлектрика оказывается слабее, чем внешнее .

Таким образом,

,

где — диэлектрическая проницаемость среды. Из формулы видно, что диэлектрическая проницаемость показывает, во сколько раз напряженность поля в вакууме больше напряженности поля в диэлектрике. Для вакуума , для диэлектриков .

  • Электрическая поляризуемость среды характеризуется величиной диэлектрической восприимчивости, являющейся коэффициентом линейной связи между поляризацией диэлектрика P и внешним электрическим полем E в достаточно малых полях:
  • Восприимчивость связана с диэлектрической проницаемостью ε соотношением

Электроемкость (определение, единицы измерения). Емкость конденсатора. Плоский конденсатор.

  1. Единицы емкости.
  2. Емкостью (фарад) обладает такой проводник, у которого потенциал возрастает на 1 В при сообщении ему заряда в 1 Кл.
  3. Емкостью обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца.
  4. Емкость Земли 700 мкФ
  5. Если проводник не уединенный, то потенциалы складываются по правилу суперпозиции и емкость проводника меняется.
  6. Конденсаторы (condensare — сгущение).

Можно создать систему проводников, емкость которой не зависит от окружающих тел. Первые конденсаторы — лейденская банка (Мушенбрук, сер. XVII в.).

Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники наз.

обкладками конденсатора.

Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками: .

При подключении конденсатора к батарее аккумуляторов происходит поляризация диэлектрика внутри конденсатора и на обкладках появляютсязаряды — конденсатор заряжается. Электрические поля окружающих тел почти не проникают через металлические обкладки и не влияют на разность потенциалов между ними.



Источник: https://infopedia.su/9x101f0.html

Связь вектора поляризации со связаными зарядами — Математика

ρb = — ∆(перевернуть) P(СИ и СГС )

оляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

§ Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает всегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика.

Читайте также:  Понятие юридического лица - справочник студента

Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ.

Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле с напряженностью Е1, направленное против внешнего поля с напряженностью Е0. Результирующая напряженность поля Е внутри диэлектрика Е=Е0-Е1.

В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

§ Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями. сен мал

§ Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.

§ Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.

§ Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.

§ Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.

§ Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.

§ Самопроизвольная (спонтанная) — благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса.

Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики).

Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10−2)

§ Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.

§ Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты. В связи с этим вводится понятие дисперсии диэлектрической проницаемости.

Источник: https://student2.ru/matematika/374099-svyaz-vektora-polyarizacii-so-svyazanymi-zaryadami/

Диэлектрики Виды диэлектриков и их поляризация Теорема Гаусса для вектора поляризации Вектор электрического смещения Теорема Гаусса для вектора электрического. — презентация

  • 1 Диэлектрики Виды диэлектриков и их поляризация Теорема Гаусса для вектора поляризации Вектор электрического смещения Теорема Гаусса для вектора электрического смещения Условия на границе раздела двух диэлектриков
  • 2 Классы веществ Все известные в природе вещества, в соответствии с их способностью проводить электрический ток, делятся на три основных класса: диэлектрики полупроводники проводники
  • 3 В качестве примеров использования различных диэлектриков можно привести: сегнетоэлектрики – электрические конденсаторы, ограничители предельно допустимого тока, позисторы, запоминающие устройства; пьезоэлектрики – генераторы ВЧ и пошаговые моторы, микрофоны, наушники, датчики давления, частотные фильтры, пьезоэлектрические адаптеры; пироэлектрики – позисторы, детекторы ИК- излучения, болометры (датчики инфракрасного излучения), электрооптические модуляторы.

4 Диэлектрики – вещества, практически не проводящие электрического тока, так как в них отсутствуют свободные заряды, способные перемещаться на значительные расстояния. Тем не менее при внесении диэлектрика в электрическое поле на его поверхности появляются электрические заряды, называемые поляризационными.

5 Смещение электрических зарядов вещества под действием электрического поля, в результате чего на поверхности, а также, вообще говоря, и в его объеме появляются нескомпенсированные заряды, называется поляризацией.

6 ЭЛЕКТРОННАЯ ПОЛЯРИЗАЦИЯ Молекулы некоторых диэлектриков не имеют собственного дипольного момента. Такие молекулы называются неполярными. Центры тяжести положительного и отрицательного зарядов у таких молекул совпадают.

7 При внесении диэлектрика в электрическое поле происходит смещение зарядов в пределах молекулы: положительных – по полю, отрицательных — против поля. Молекула приобретает дипольный момент.

8 ОРИЕНТАЦИОННАЯ ПОЛЯРИЗАЦИЯ Молекулы других диэлектриков могут иметь собственный дипольный момент. Центры тяжести положительного и отрицательного зарядов у таких молекул не совпадают. Молекулы называются полярными.

9 ИОННАЯ ПОЛЯРИЗАЦИЯ

10 Этот тип поляризации характерен для твердых диэлектриков, у которых решетка построена из положительных и отрицательных ионов. Подрешетки располагаются таким образом, что электрический момент кристаллов равен нулю. При включении поля подрешетки сдвигаются друг относительно друга, кристалл приобретает электрический момент.

11 Под действием электрического поля в пределах каждой молекулы происходит смещение зарядов, положительных по полю, отрицательных против поля. В результате чего неполярная молекула приобретает дипольный момент.

Полярная молекула обладает собственным дипольным моментом.

В отсутствии поля дипольные моменты полярных молекул ориентированы хаотично, под действием внешнего электрического поля дипольные моменты ориентируются преимущественно по полю.

12 Во всех случаях на поверхности диэлектрика появляются поверхностные связанные заряды.

13 Внутри диэлектрика электрические заряды диполей компенсируют друг друга. Но на внешних поверхностях диэлектрика, появляются заряды противоположного знака (поверхностно связанные заряды).

14 Обозначим напряженность электростатического поля связанных зарядов а напряженность внешнего поля. Результирующее электростатическое поле внутри диэлектрика В проекциях

15 Вектор поляризации Для количественного описания поляризации диэлектрика берут дипольный момент единицы объема где — физически бесконечно малый объем. Вектор поляризации (поляризованность) представим в виде:

16 Другое выражение связано с представлением диэлектрика как смеси двух «жидкостей»: положительной и отрицательной. Если выделить объем то он будет содержать — положительный заряд и — отрицательный заряд.

  1. 17 Для большинства изотропных диэлектриков где — диэлектрическая восприимчивость, а — поляризуемость одной молекулы, которая показывает насколько легко индуцировать электрическим полем дипольный момент у атома.
  2. 18 Теорема Гаусса для вектора поляризации Поток вектора сквозь произвольную замкнутую поверхность равен взятому с противоположным знаком избыточному связанному заряду диэлектрика в объеме, охватываемом поверхностью
  3. 19 Выберем гауссову поверхность, частично охватывающую диэлектрик,
  4. 20 В результате поляризации диэлектрика через сечение проходит: — положительный связанный заряд, — отрицательный связанный заряд.
  5. 21 Суммарный связанный заряд, прошедший через сечение равен Таким образом Просуммировав по всей поверхности, получаем
  6. 22 Вышедший через поверхность заряд равен по модулю, но противоположен по знаку связанному избыточному заряду, оставшемуся внутри поверхности Доказано В дифференциальной форме
  7. 23 Поведение вектора P на границе двух сред Воспользуемся теоремой Гаусса для вектора поляризации Пренебрегая потоком через боковую поверхность, запишем
  8. 24 Учитывая, что получим или Если вторая среда вакуум, то
Читайте также:  Феномены памяти - справочник студента

25 Рассмотрим поведение вектора на границе раздела двух диэлектриков. В качестве гауссовой поверхности возьмем небольшой цилиндр. Высоту цилиндра будем считать пренебрежимо малой, а настолько малой, чтобы вектор для каждой точки можно было бы считать одинаковым. Нормаль к поверхности всегда будем проводить от первого диэлектрика ко второму.

26 Знак проекции определяет и знак Если то на поверхности диэлектрика находится положительный заряд, если же то отрицательный.

27 Вектор электрического смещения Рассмотрим теорему Гаусса для электростатического поля, которое в общем случае создается как сторонними, так и связанными зарядами Преобразуем формулу

28 Продолжим преобразования Вектор называют вектором электрического смещения. Вектор электрического смещения вводится для удобства расчета полей в средах.

29 Теорема Гаусса для вектора Приходим к теореме Гаусса для вектора Поток вектора электрического смещения сквозь произвольную замкнутую поверхность равен алгебраической сумме сторонних зарядов, охватываемых этой поверхностью. В дифференциальной форме

30 В случае изотропных диэлектриков, для которых справедливо получаем Величина называется диэлектрической проницаемостью вещества.

31 Поле вектора также может быть представлено с помощью линий, направление и густота которых определяются точно так же как и для линий вектора Источниками и стоками поля являются только сторонние заряды. Только на них могут начинаться и заканчиваться линии вектора Через область поля, где находятся связанные заряды, линии вектора проходят не прерываясь.

32 Условия на границе раздела двух диэлектрических сред. Найдем циркуляцию вектора вдоль контура, имеющего форму вытянутого прямоугольника. Тангенциальная составляющая вектора не испытывает скачок на границе раздела.

33 Воспользуемся теоремой Гаусса для вектора Возьмем очень малой высоты цилиндр, расположив его на границе раздела. В общем случае на границе раздела могут находиться сторонние заряды.

34 Тогда Если сторонние заряды на границе раздела отсутствуют, то Нормальная составляющая вектора электрического смещения не испытывает скачок на границе раздела двух сред, если нет сторонних зарядов на границе.

35 Рассмотрим полученные условия Разделим одно на другое, получим

36 Рассмотрим рисунок. Из рис. ясно, что Следовательно,

  • 37 Полученный закон преломления справедлив и для линий вектора электрического смещения
  • 38 Смысл диэлектрической постоянной Поместим диэлектрик в однородное электрическое поле Учтем, что тогда
  • 39 Таким образом, диэлектрическая постоянная показывает во сколько раз ослабляется поле внутри диэлектрика. Умножим обе части на, получим
  • 40

41 СЕГНЕТОЭЛЕКТРИКИ В 1920 г. была открыта спонтанная (самопроизвольная) поляризация. Всю группу веществ, назвали сегнетоэлектрики (или ферроэлектрики).

Все сегнетоэлектрики обнаруживают резкую анизотропию свойств (сегнетоэлектрические свойства могут наблюдаться только вдоль одной из осей кристалла).

У изотропных диэлектриков поляризация всех молекул одинакова, у анизотропных – поляризация, и следовательно, вектор поляризации в разных направлениях разные.

42 Основные свойства сегнетоэлектриков: 1. Диэлектрическая проницаемость ε в некотором температурном интервале велика( ). 2. Значение ε зависит не только от внешнего поля E 0, но и от предыстории образца (явление гистерезиса). 3.

Диэлектрическая проницаемость ε (а следовательно, и Р ) – нелинейно зависит от напряженности внешнего электростатического поля (нелинейные диэлектрики). 4. Наличие точки Кюри — температуры, при которой сегнетоэлектрические свойства исчезают.

  1. 43 Например: Титанат бария — ; Сегнетова соль — Ниобат лития —
  2. 44 ПЕТЛЯ ГИСТЕРЕЗИСА
  3. 45 Стремление к минимальной потенциальной энергии и наличие дефектов структуры приводит к тому, что сегнетоэлектрик разбит на домены
  4. 46 ЭЛЕКТРЕТЫ Среди диэлектриков есть вещества, называемые электреты – диэлектрики, длительно сохраняющие поляризованное состояние после снятия внешнего электростатического поля (аналоги постоянных магнитов).

47 ПЬЕЗОЭЛЕКТРИКИ Некоторые диэлектрики поляризуются не только под действием электрического поля, но и под действием механической деформации. Это явление называется пьезоэлектрическим эффектом.

Явление открыто братьями Пьером и Жаком Кюри в 1880 году. Если на грани кристалла наложить металлические электроды (обкладки) то при деформации кристалла на обкладках возникнет разность потенциалов.

Если замкнуть обкладки, то потечет ток.

48

49 Возможен и обратный пьезоэлектрический эффект: Возможен и обратный пьезоэлектрический эффект: Возникновение поляризации сопровождается механическими деформациями. Возникновение поляризации сопровождается механическими деформациями.

Если на пьезоэлектрический кристалл подать напряжение, то возникнут механические деформации кристалла, причем, деформации будут пропорциональны приложенному электрическому полю Е 0.

Если на пьезоэлектрический кристалл подать напряжение, то возникнут механические деформации кристалла, причем, деформации будут пропорциональны приложенному электрическому полю Е 0.

Сейчас известно более 1800 пьезокристаллов.Сейчас известно более 1800 пьезокристаллов. Все сегнетоэлектрики обладают пьезоэлектрическими свойствами Все сегнетоэлектрики обладают пьезоэлектрическими свойствами Используются в пьезоэлектрических адаптерах и других устройствах). Используются в пьезоэлектрических адаптерах и других устройствах).

50 ПИРОЭЛЕКТРИКИ Пироэлектричество – появление электрических зарядов на поверхности некоторых кристаллов при их нагревании или охлаждении.

При нагревании один конец диэлектрика заряжается положительно, а при охлаждении он же – отрицательно. Появление зарядов связано с изменением существующей поляризации при изменении температуры кристаллов.

Все пироэлектрики являются пьезоэлектриками, но не наоборот. Некоторые пироэлектрики обладают сегнетоэлектрическими свойствами.

51 ПРИМЕНЕНИЕ ДИЭЛЕКТРИКОВ В качестве примеров использования различных диэлектриков можно привести: сегнетоэлектрики – электрические конденсаторы, ограничители предельно допустимого тока, позисторы, запоминающие устройства; пьезоэлектрики – генераторы ВЧ и пошаговые моторы, микрофоны, наушники, датчики давления, частотные фильтры, пьезоэлектрические адаптеры; пироэлектрики – позисторы, детекторы ИК- излучения, болометры (датчики инфракрасного излучения), электрооптические модуляторы.

Источник: http://www.myshared.ru/slide/1000184/

Ссылка на основную публикацию