Энергия заряженного конденсатора — справочник студента

Процесс возникновения зарядов на обкладках конденсатора можно пред­ставить так, что от одной обкладки последовательно отнимают очень малые порции заряда  и перемещают на другую обкладку (рис. 2.20). В этом случае можно записать соотношения, аналогичные формулам предыдущего раздела:

Энергия заряженного конденсатора - Справочник студента (2.53)

Здесь Энергия заряженного конденсатора - Справочник студента разность потенциалов между обкладками, а заряд конденсатора в момент переноса . Чтобы зарядить незаряженный конденсатор некоторым конечным зарядом  требуется затратить работу

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!
Энергия заряженного конденсатора - Справочник студента (2.54)

  Энергия заряженного конденсатора - Справочник студента

Рис. 2.20. Процесс зарядки конденсатора 

Это и есть энергия, запасенная в конденсаторе. Ее можно также записать в виде:

Энергия заряженного конденсатора - Справочник студента (2.55)

 

Видео 2.11. Энергия заряженного конденсатора и её возможное использование.

Выбор любой из этих эквивалентных формул диктуется условиями решаемой задачи. Заметим также, что применение общей формулы (2.41) для энергии системы зарядов также приводит к этим выражениям:

Энергия заряженного конденсатора - Справочник студента (2.56)

В случае плоского конденсатора напряженность поля внутри него не зависит от расстояния между пластинами. Это позволяет взглянуть на процесс зарядки конденсатора с другой стороны. Предположим, что заряды  уже имеются на пластинах, которые расположены бесконечно близко друг от друга.

Энергия в такой системе равна нулю, т. к. поверхностные заряды компенсируют друг друга. Станем отодвигать одну из обкладок.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Внутренняя среда организации - справочник студента

Оценим за полчаса!

Со стороны другой обкладки на нее действует сила, равная произведению заряда обкладки  на напряженность поля , созда­ваемого покоящейся обкладкой (это поле в два раза меньше полного поля в конденсаторе):

Энергия заряженного конденсатора - Справочник студента

При раздвижении пластин друг от друга на расстояние  совершается работа  и такой же будет запасенная в конденсаторе энергия:

Энергия заряженного конденсатора - Справочник студента

Источник: https://online.mephi.ru/courses/physics/electricity/data/course/2/2.9.html

Энергия заряженного конденсатора. Применение конденсаторов — Класс!ная физика

«Физика — 10 класс»

Как и любая система заряженных тел, конденсатор обладает энергией. Вычислить энергию заряженного плоского конденсатора с однородным полем внутри него несложно.

Энергия заряженного конденсатора.

Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта работа равна энергии конденсатора.

В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, содержащую лампу накаливания, рассчитанную на напряжение в несколько вольт (рис.14.37).

При разрядке конденсатора лампа вспыхивает.

Энергия конденсатора превращается в тепло и энергию света.

Энергия заряженного конденсатора - Справочник студента

Выведем формулу для энергии плоского конденсатора.

Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины (рис.14.38).

Энергия заряженного конденсатора - Справочник студента

Согласно формуле (14.14) для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

Энергия заряженного конденсатора - Справочник студента

где q — заряд конденсатора, а d — расстояние между пластинами.

Так как Ed=U, где U — разность потенциалов между обкладками конденсатора, то его энергия равна:

Энергия заряженного конденсатора - Справочник студента

Эта энергия равна работе, которую совершит электрическое поле при сближении пластин вплотную.

Если заряд на пластинах остаётся постоянным, при сближении пластин поле совершает положительную работу:

Энергия заряженного конденсатора - Справочник студента

При этом энергия электрического поля уменьшается.

Заменив в формуле (14.25) разность потенциалов или заряд с помощью выражения (14.22) для электроемкости конденсатора, получим:

Энергия заряженного конденсатора - Справочник студента

Можно доказать, что эти формулы справедливы для любого конденсатора, а не только для плоского.

Энергия электрического поля.

Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электрическом поле этих тел. Значит, энергия может быть выражена через основную характеристику поля — напряженность.

Так как напряженность электрического поля прямо пропорциональна разности потенциалов (U=Ed), то согласно формуле

энергия конденсатора прямопропорциональна квадрату напряженности электрического поля внутри него:

.

Применение конденсаторов.

Зависимость электроемкости конденсатора от расстояния между его пластинами используется при создании одного из типов клавиатур компьютера. На тыльной стороне каждой клавиши располагается одна пластина конденсатора, а на плате, расположенной под клавишами, — другая. Нажатие клавиши изменяет емкость конденсатора.

Электронная схема, подключенная к этому конденсатору, преобразует сигнал в соответствующий код, передаваемый в компьютер.

Энергия конденсатора обычно не очень велика — не более сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда.

Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии.

Но это совсем не означает, что конденсаторы как накопители энергии не получили практического применения. Они имеют одно важное свойство: конденсаторы могут накапливать энергию более или менее длительное время, а при разрядке через цепь с малым сопротивлением они отдают энергию почти мгновенно.

Именно это свойство широко используют на практике.

Лампа-вспышка, применяемая в фотографии, питается электрическим током разряда конденсатора, заряжаемого предварительно специальной батареей. Возбуждение квантовых источников света — лазеров осуществляется с помощью газоразрядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроемкости.

Однако основное применение конденсаторы находят в радиотехнике.

Энергия конденсатора пропорциональна его электроемкости и квадрату напряжения между пластинами. Вся эта энергия сосредоточена в электрическом поле. Энергия поля пропорциональна квадрату напряженности поля.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Электростатика — Физика, учебник для 10 класса — Класс!ная физика

Что такое электродинамика — Электрический заряд и элементарные частицы. Закон сохранения заряд — Закон Кулона. Единица электрического заряда — Примеры решения задач по теме «Закон Кулона» — Близкодействие и действие на расстоянии — Электрическое поле — Напряжённость электрического поля. Силовые линии — Поле точечного заряда и заряженного шара.

Принцип суперпозиции полей — Примеры решения задач по теме «Напряжённость электрического поля.

Принцип суперпозиции полей» — Проводники в электростатическом поле — Диэлектрики в электростатическом поле — Потенциальная энергия заряженного тела в однородном электростатическом поле — Потенциал электростатического поля и разность потенциалов — Связь между напряжённостью электростатического поля и разностью потенциалов.

Эквипотенциальные поверхности — Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» — Электроёмкость. Единицы электроёмкости. Конденсатор — Энергия заряженного конденсатора. Применение конденсаторов — Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»

Источник: http://class-fizika.ru/10_a181.html

Чему равна энергия заряженного конденсатора

  • Пусть потенциал обкладки конденсатора, на которой находится заряд равен а потенциал обкладки, на которой находится заряд , равен Тогда каждый из элементарных зарядов на которые можно разделить заряд находится в точке с потенциалом а каждый из зарядов, на которые можно разделить заряд , в точке с потенциалом .
  • Согласно формуле (28.1) энергия такой системы зарядов равна
  • Воспользовавшись соотношением (27.2), можно написать три выражения для энергии заряженного конденсатора:

Энергия заряженного конденсатора - Справочник студента

Формулы (29.2) отличаются от формул (28.3) только заменой на

С помощью выражения для потенциальной энергии можно найти силу, с которой пластины плоского конденсатора притягивают друг друга. Допустим, что расстояние между пластинами может меняться. Свяжем начало оси х с левой пластиной (рис. 29.1). Тогда координата х второй пластины будет определять зазор d между обкладками. Согласно формулам (27.3) и (29.2)

Энергия заряженного конденсатора - Справочник студента

Продифференцируем это выражение по х, полагая заряд на обкладках неизменным (конденсатор отключен от источника напряжения). В результате получим проекцию на ось х силы, действующей на правую пластину:

Энергия заряженного конденсатора - Справочник студентаЭнергия заряженного конденсатора - Справочник студента

Модуль этого выражения дает величину силы, с которой обкладки притягивают друг друга:

Теперь попытаемся вычислить силу притяжения между обкладками плоского конденсатора как произведение напряженности поля, создаваемого одной из обкладок, на заряд, сосредоточенный на другой. Согласно формуле (14.3) напряженность поля, создаваемого одной обкладкой, равна

Энергия заряженного конденсатора - Справочник студента

Диэлектрик ослабляет поле в зазоре в раз, но это имеет место только внутри диэлектрика (см. формулу (20.2) и связанный с нею текст). Заряды на обкладках располагаются вне диэлектрика и поэтому находятся под действием поля напряженности (29.4).

Умножив заряд обкладки q на эту напряженность, получим для силы выражение

Формулы (29.3) и (29.5) не совпадают. С опытом согласуется значение силы (29.3), получающееся из выражения для энергии. Это объясняется тем, что, кроме «электрической» силы (29.5), на обкладки действуют со стороны диэлектрика механические силы, стремящиеся их раздвинуть (см. § 22; отметим, что мы имеем в виду жидкий или газообразный диэлектрик).

У края обкладок имеется рассеянное поле, убывающее по величине при удалении от краев (рис. 29.2). Молекулы диэлектрика, обладая дипольным моментом, испытывают дйствие силы, втягивающей их в область более сильного поля (см. формулу (9.16)). В результате давление между обкладками повышается и появляется сила, ослабляющая действие силы (29.5) в раз.

Энергия заряженного конденсатора - Справочник студента

Если заряженный конденсатор с воздушным зазором частично погрузить в жидкий диэлектрик, наблюдается втягивание диэлектрика в пространство между пластинами (рис. 29.3). Это явление объясняется следующим образом. -Диэлектрическая проницаемость воздуха практически равна единице.

Поэтому до погружения пластин в диэлектрик емкость конденсатора можно считать равной а энергию равной При частичном заполнении зазора диэлектриком конденсатор можно рассматривать как два параллельно включенных конденсатора, один из которых имеет площадь обкладки, равную — относительная часть зазора, заполненная жидкостью), и заполнен диэлектриком с второй с воздушным зазором имеет площадь обкладки, равную При параллельном включении конденсаторов емкости складываются:

Поскольку энергия будет меньше, чем (заряд q предполагается неизменным — перед погружением в жидкость конденсатор был отключен от источника напряжения). Следовательно, заполнение зазора диэлектриком оказывается энергетически выгодным. Поэтому диэлектрик втягивается в конденсатор и уровень его в зазоре поднимается.

Это в свою очередь приводит к возрастанию потенциальной энергии диэлектрика в поле сил тяжести. В конечном итоге уровень диэлектрика в зазоре установится на некоторой высоте, соответствующей минимуму суммарной энергии (электрической и гравитационной).

Рассмотренное явление сходно с капиллярным поднятием жидкости в узком зазоре между пластинками (см. § 119 1-го тома).

Втягивание диэлектрика в зазор между обкладками можно яснить также и с микроскопической точки зрения. У краев пластин конденсатора имеется неоднородное поле.

Молекулы диэлектрика обладают собственным дипольным моментом либо приобретают его под действием поля; поэтому на них действуют силы, стремящиеся переместить их в область сильного поля, т. е. внутрь конденсатора.

Под действием этих сил жидкость втягивается в зазор до тех пор, пока электрические силы, действующие на жидкость у края пластин, не будут уравновешены весом столба жидкости.

Читайте также:  Электромагнитные колебания - справочник студента

В заряженном конденсаторе обкладки име-ют разноименные заряды и взаимодейст-вуют между собой благодаря электричес-кому полю, которое сосредоточено в прост-ранстве между обкладками. О телах, между которыми существует взаимодействие, гово-рят, что они имеют потенциальную энер-гию. Следовательно, можно говорить и об энергии заряженного конденсатора
.

Обкладки заряженного конден-сатора взаимодействуют между собой.

Наличие энергии
у заряженного конден-сатора можно подтвердить опытами.

Возьмем конденсатор достаточно боль-шой емкости, источник тока, лампочку на-кала и составим электрическую цепь, схема которой изображена на рис. 4.82. Переведем переключатель S
в положение 1 и зарядим конденсатор до определенной разности по-тенциалов от источника GB.

Если после этого перевести переключатель в положение 2, то можно наблюдать кратковременную вспышку света вследствие накала нити лам-почки.

Наблюдаемое явление можно объяс-нить тем, что заряженный конденсатор имел энергию
, за счет которой была выполнена работа по накалу спирали лампочки.

В соответствии с законом сохранения энер-гии
работа, выполненная при разрядке кон-денсатора, равняется работе, выполненной при его зарядке. Расчет этой работы и, соответственно, потенциальной энергии кон-денсатора осложнен особенностями процес-са зарядки конденсатора.

Пластины его за-ряжаются и разряжаются постепенно. Зави-симость заряда Q
конденсатора от времени при зарядке показана на графике (рис. 4.83). Заряд не только увеличивается постепенно, но и скорость его изменения не остается постоянной.

Итак, вести расчеты на осно-вании формулы A =
qEd
нельзя, поскольку напряженность электрического поля не остается постоянной. Разность потенциалов также изменяется от нуля до максимально-го значения. На рис. 4.84 показано, что разность потенциалов изменяется про-порционально заряду конденсатора.

Такая зависимость характерна для силы упругос-ти, которая зависит от удлинения пружины (рис. 4.85).

Воспользовавшись таким подобием, мож-но сделать вывод, что энергия заряженного конденсатора
будет равна

W =
Q
Δφ / 2.
Материал с сайта

Эта энергия
равна работе по зарядке конденсатора, которая численно равна пло-щади заштрихованного треугольника на гра-фике рис. 4.84.

  1. Учитывая, что Q =
    C
    Δφ
    , получим
  2. W =
    C(Δφ)
    2 / 2.
  3. А если учесть связь разности потенциалов с зарядом Δφ =
    Q /
    C
    , то потенциальная энер-гия конденсатора может быть вычислена по формуле

W = (Q / 2) . (Q /
C) =
Q 2 / 2
C.

  • На этой странице материал по темам:
  • Вопросы по этому материалу:
  • Электроемкостью
    (емкостью) C уединенного изолированного
    проводника называется физическая
    величина, равная отношению изменения
    заряда проводника q к изменению
    его потенциала f:
    C = Dq/Df.

Электроемкость
уединенного проводника зависит только
от его формы и размеров, а также
от окружающей его диэлектрической
среды (e).
Единица
измерения емкости в системе
СИ называется Фарадой. Фарада (Ф) —
это емкость такого уединенного проводника,
потенциал которого повышается на 1 Вольт
при сообщении ему заряда в 1 Кулон.
1 Ф =
1 Кл/1 В.

Конденсатором
называют систему двух разноименно
заряженных проводников, разделенных
диэлектриком (например, воздухом).

Свойство
конденсаторов накапливать и сохранять
электрические заряды и связанное
с ними электрическое поле характеризуется
величиной, называемой электроемкостью
конденсатора.

Электроемкость конденсатора
равна отношению заряда одной из пластин
Q к напряжению между ними U:
C =
Q/U.

В
зависимости от формы обкладок,
конденсаторы бывают плоскими, сферическими
и цилиндрическими. Формулы для расчета
емкостей этих конденсаторов приведены
в таблице.

Соединение
конденсаторов в батареи.
На практике
конденсаторы часто соединяют в батареи —
последовательно или параллельно.

  1. При
    параллельном соединении напряжение
    на всех обкладках одинаковое
    U1 =
    U2 = U3 = U = e, а емкость батареи
    равняется сумме емкостей отдельных
    конденсаторов C = C1 + C2 + C3.
  2. При
    последовательном соединении заряд
    на обкладках всех конденсаторов
    одинаков Q1 = Q2 = Q3, а напряжение
    батареи равняется сумме напряжений
    отдельных конденсаторов U = U1 + U2 +
    U3.
  3. Емкость
    всей системы последовательно соединенных
    конденсаторов рассчитывается
    из соотношения:
    1/C = U/Q = 1/C1 + 1/C2 +
    1/C3.

Емкость
батареи последовательно соединенных
конденсаторов всегда меньше, чем емкость
каждого из этих конденсаторов
в отдельности.
Энергия электростатического
поля.
Энергия заряженного плоского
конденсатора Eк равна работе A, которая
была затрачена при его зарядке, или
совершается при его разрядке.
A =
CU2/2 = Q2/2С = QU/2 = Eк.

Поскольку
напряжение на конденсаторе может
быть рассчитано из соотношения:
U =
E*d,
где E — напряженность поля между
обкладками конденсатора,
d —
расстояние между пластинами
конденсатора,
то энергия заряженного
конденсатора равна:
Eк = CU2/2 =
ee0S/2d*E2*d2 = ee0S*d*E2/2 = ee0V*E2/2,
где V —
объем пространства между обкладками
конденсатора.

Энергия заряженного
конденсатора сосредоточена в его
электрическом поле.

Тип конденсатора Формула для расчета емкости Примечания Схематическое изображение
Плоский конденсатор S — площадь пластины;
d — расстояние между пластинами.
Сферический конденсатор C = 4pee0R1R2/(R2 — R1) R2 и R1 — радиусы внешней и внутренней обкладок.
Цилиндрический конденсатор C = 2pee0h/ln(R2/R1) h — высота цилиндров.

Как
и любая система заряженных
тел, конденсатор
обладает
энергией. Вычислить энергию заряженного
плоского конденсатора с однородным
полем внутри него несложно. Энергия
заряженного конденсатора.
Для
того чтобы зарядить конденсатор, нужно
совершить работу по разделению
положительных и отрицательных зарядов.

Согласно закону сохранения энергии эта
работа равна энергии конденсатора. В
том, что заряженный конденсатор обладает
энергией, можно убедиться, если разрядить
его через цепь, содержащую лампу
накаливания, рассчитанную на напряжение
в несколько вольт (рис.14.37
).
При разрядке конденсатора лампа
вспыхивает.

Энергия конденсатора
превращается в тепло и энергию света.

Выведем
формулу для энергии плоского
конденсатора.
Напряженность поля, созданного зарядом
одной из пластин, равна Е/2
,
где Е
-напряженность
поля в конденсаторе.

В однородном поле
одной пластины находится заряд q
,
распределенный по поверхности другой
пластины (рис.14.38
).
Согласно формуле (14.

14) для потенциальной
энергии заряда в однородном
поле энергия
конденсатора
равна:

где q

заряд конденсатора, а d

расстояние между пластинами.
Так как Ed=U
,
где U

разность потенциалов между обкладками
конденсатора, то его энергия равна:

Эта
энергия равна работе, которую совершит
электрическое поле при сближении пластин
вплотную.
Заменив в формуле (14.25) разность потенциалов
или заряд с помощью выражения (14.22) для
электроемкости конденсатора, получим:

W=qU/2=q^2/
2C=CU^2/ 2

Можно
доказать, что эти формулы справедливы
для любого конденсатора, а не только
для плоского. Энергия
электрического поля.

Согласно
теории близкодействия вся энергия
взаимодействия заряженных тел
сконцентрирована в электрическом поле
этих тел. Значит, энергия может быть
выражена через основную характеристику
поля — напряженность
.

Так как напряженность электрического
поля прямо пропорциональна разности
потенциалов (U=Ed
,
то согласно формуле W=qU/2=q^2/
2C=CU^2/
2

энергия
конденсатора прямопропорциональна
квадрату напряженности электрического
поля внутри него: W~E^2. Применение
конденсаторов
.
Зависимость электроемкости конденсатора
от расстояния между его пластинами
используется при создании одного из
типов клавиатур компьютера.

На тыльной
стороне каждой клавиши располагается
одна пластина конденсатора, а на плате,
расположенной под клавишами, — другая.
Нажатие клавиши изменяет емкость
конденсатора. Электронная схема,
подключенная к этому конденсатору,
преобразует сигнал в соответствующий
код, передаваемый в компьютер.

Энергия конденсатора обычно не очень
велика — не более сотен джоулей. К тому
же она не сохраняется долго из-за
неизбежной утечки заряда. Поэтому
заряженные конденсаторы не могут
заменить, например, аккумуляторы в
качестве источников электрической
энергии.

Но это совсем не означает, что конденсаторы
как накопители энергии не получили
практического применения. Они имеют
одно важное свойство: конденсаторы
могут накапливать энергию более или
менее длительное время, а при разрядке
через цепь с малым сопротивлением они
отдают энергию почти мгновенно. Именно
это свойство широко используют на
практике.

Лампа-вспышка, применяемая в фотографии
,
питается электрическим током разряда
конденсатора, заряжаемого предварительно
специальной батареей. Возбуждение
квантовых источников света — лазеров
осуществляется с помощью газоразрядной
трубки, вспышка которой происходит при
разрядке батареи конденсаторов большой
электроемкости.

Однако основное применение конденсаторы
находят в радиотехнике.
Энергия конденсатора пропорциональна
его электроемкости и квадрату напряжения
между пластинами. Вся эта энергия
сосредоточена в электрическом поле.
Энергия поля пропорциональна квадрату
напряженности поля.

Источник: https://les74.ru/what-is-the-energy-of-a-charged-capacitor.html

Энергия заряженного конденсатора

В заряженном конденсаторе обкладки име­ют разноименные заряды и взаимодейст­вуют между собой благодаря электричес­кому полю, которое сосредоточено в прост­ранстве между обкладками. О телах, между которыми существует взаимодействие, гово­рят, что они имеют потенциальную энер­гию. Следовательно, можно говорить и об энергии заряженного конденсатора.

Обкладки заряженного конден­сатора взаимодействуют между собой.

Наличие энергии у заряженного конден­сатора можно подтвердить опытами.

Возьмем конденсатор достаточно боль­шой емкости, источник тока, лампочку на­кала и составим электрическую цепь, схема которой изображена на рис. 4.82. Переведем переключатель S в положение 1 и зарядим конденсатор до определенной разности по­тенциалов от источника GB.

Если после этого перевести переключатель в положение 2, то можно наблюдать кратковременную вспышку света вследствие накала нити лам­почки.

Наблюдаемое явление можно объяс­нить тем, что заряженный конденсатор имел энергию, за счет которой была выполнена работа по накалу спирали лампочки.

Энергия заряженного конденсатора - Справочник студента
Рис. 4.82. Схема опыта, который пока­зывает наличие энергии в заряженном конденсаторе
Энергия заряженного конденсатора - Справочник студента
Рис. 4.83. Изменение заряда конденса­тора при его зарядке

В соответствии с законом сохранения энер­гии работа, выполненная при разрядке кон­денсатора, равняется работе, выполненной при его зарядке. Расчет этой работы и, соответственно, потенциальной энергии кон­денсатора осложнен особенностями процес­са зарядки конденсатора.

Пластины его за­ряжаются и разряжаются постепенно. Зави­симость заряда Q конденсатора от времени при зарядке показана на графике (рис. 4.83). Заряд не только увеличивается постепенно, но и скорость его изменения не остается постоянной.

Итак, вести расчеты на осно­вании формулы A = qEd нельзя, поскольку напряженность электрического поля не остается постоянной. Разность потенциалов также изменяется от нуля до максимально­го значения. На рис. 4.84 показано, что разность потенциалов изменяется про­порционально заряду конденсатора.

Такая зависимость характерна для силы упругос­ти, которая зависит от удлинения пружины (рис. 4.85).

Воспользовавшись таким подобием, мож­но сделать вывод, что энергия заряженного конденсатора будет равна

W = QΔφ / 2. Материал с сайта http://worldofschool.ru

Энергия заряженного конденсатора - Справочник студента
Рис. 4.84. К вычислению работы элект­рического поля
Энергия заряженного конденсатора - Справочник студента
Рис. 4.85. К вычислению работы силы упругости

Эта энергия равна работе по зарядке конденсатора, которая численно равна пло­щади заштрихованного треугольника на гра­фике рис. 4.84.

  • Учитывая, что Q = CΔφ, получим
  • W = C(Δφ)2 / 2.
  • А если учесть связь разности потенциалов с зарядом Δφ = Q / C, то потенциальная энер­гия конденсатора может быть вычислена по формуле
  • W = (Q / 2) • (Q / C) = Q2 / 2C.

На этой странице материал по темам: Вопросы по этому материалу:

Источник: http://WorldOfSchool.ru/fizika/el-dinamika/yavleniya/em/el/kondensator/energiya-zaryazhennogo-kondensatora

Энергия заряженного конденсатора. Формула

Для того, чтобы правильно представлять работу конденсатора, необходимо точно знать о поведении в электрическом поле проводников и диэлектриков.

Именно их свойства являются основой работы этих специальных устройств. Одним из показателей работы служит энергия заряженного конденсатора, формула которой достаточно точно описывает этот процесс.

Кроме того, нужно знать, что вообще представляет собой обычный стандартный конденсатор.

Устройство и принцип работы конденсатора

Название конденсатора имеет латинские корни, означающие сгущение или уплотнение. Он имеет два полюса и обладает емкостью с переменным или постоянным значением. Отличительной чертой конденсатора является его незначительная проводимость. Это устройство выполняет основную функцию, связанную с накоплением определенного заряда и электрической энергии.

Энергия заряженного конденсатора - Справочник студента

Значение энергии конденсатора

Прежде всего, необходимо рассмотреть такое понятие, как электрическая емкость. В обычном проводнике этот параметр почти не используется. Более всего он подходит к заряженному конденсатору, который, по своей сути, также является проводником или даже системой проводников. В зависимости от емкости, определяется и энергия заряженного конденсатора, формула которой отражает ее величину.

Правило буравчика, правой и левой руки

Практически каждый конденсатор после его заряда, начинает обладать энергией. Достаточно подключить лампочку, чтобы увидеть, как она загорится на короткое время. Это показывает наличие определенных запасов энергии, выделение которой происходит во время разрядки. Она возникает, как потенциальная энергия, с которой взаимодействуют между собой обкладки конденсатора. Эти обкладки имеют разноименные заряды, способные притягиваться между собой.

Значение энергии зависит от величины заряда, напряжения в сети и других факторов. Чем больше емкость у конденсатора, тем более высокой энергией он обладает.

Источник: https://electric-220.ru/news/ehnergija_zarjazhennogo_kondensatora_formula/2014-08-17-676

Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля

Энергия системы неподвижных точеч­ных зарядов

  • Найдем потенциальную энергию системы двух точечных зарядов Q1 и Q2, находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:
  • где φ12 и φ21 — соответственно потенциа­лы, создаваемые зарядом Q2 в точке на­хождения заряда Q1и зарядом Q1в точке нахождения заряда Q2. Потенциал поля точечного заряда равен:
  • поэтому
  • W1=W2=W
  • и

Добавляя к системе из двух зарядов по­следовательно заряды Q3, Q4, …, можно убедиться в том, что в случае nнепод­вижных зарядов энергия взаимодействия системы точечных зарядов равна

где i — потенциал, создаваемый в той точке, где находится заряд Qi, всеми за­рядами, кроме i-го.

Энергия заряженного уединенного проводника

Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, φ. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный провод­ник, затратив на это работу, равную

Чтобы зарядить тело от нулевого потенци­ала до , необходимо совершить работу

Энергия заряженного проводника рав­на той работе, которую необходимо совершить, чтобы зарядить этот проводник:

Эту формулу можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной.Полагая потенциал проводника равным , из (3) найдем

где – заряд проводника.

Энергия заряженного конденсато­ра

Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (4) равна

где Q— заряд конденсатора, С — его ем­кость,  — разность потенциалов между обкладками.

Используя выражение (5), можно найти механическую силу, с которой пластины конден­сатора притягивают друг друга. Для этого предположим, что расстояние х меж­ду пластинами меняется, например, на величину dx. Тогда действующая сила со­вершает работу

  1. dA=Fdx
  2. вследствие уменьшения потенциальной энергии системы
  3. Fdx = –dW,
  4. откуда
  5. (6)
  6. Подставив в (5) в формулу емкости плоского конденсатора, по­лучим

Производядифференцирование при кон­кретном значении энергии (см. (6) и (7)), найдем искомую силу:

где знак минус указывает, что сила Fявляется силой притяжения.

Энергия электростатического поля

Преобразуем формулу (5), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воcпользовавшись выражением для емкости плоского конденсатора (C = 0S/d) и раз­ности потенциалов между его обкладками ( = Ed). Тогда получим

где V = Sd— объем конденсатора. Эта форму­ла показывает, что энергия кон­денсатора выражается через величину, характеризующую электростатическое по­ле,— напряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

Формулы (5) и (8) соответствен­но связывают энергию конденсатора с за­рядом на его обкладках и с напряженно­стью поля. Возникает, естественно, вопрос о локализации электростатической энер­гии и что является ее носителем — заряды или иоле? Ответ на этот вопрос может дать только опыт.

Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. По­этому электростатика ответить на постав­ленные вопросы не может.

Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обо­собленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, спо­собных переносить энергию.

Это убеди­тельно подтверждает основное положение теории близкодействия о локализации энергии в поле и что носителем энергии является поле.

Источник: https://NauchnieStati.ru/spravka/jenergija-sistemy-zarjadov-uedinennogo-provodnika-i-kondensatora-jenergija-jelektrostaticheskogo-polja/

Конденсатор. Энергия электрического поля

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах.

Но прежде введём понятие электрической ёмкости.

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым.

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду. Коэффициент пропорциональности принято обозначать , так что

  • Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:
  • (1)
  • Например, потенциал уединённого шара в вакууме равен:
  1. где — заряд шара, — его радиус. Отсюда ёмкость шара:
  2. (2)
  3. Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в раз:
  4. Соответственно, ёмкость шара в раз увеличивается:
  5. (3)

Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В. Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.

  • мкФ.
  • Как видите, Ф — это очень большая ёмкость.
  • Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим из формулы (2):
  • Следовательно, диэлектрическая постоянная может измеряться в Ф/м:
  • Ф.
  • Так легче запомнить, не правда ли?

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными.

Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника.

В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор. Он состоит из двух параллельных металлических пластин (называемых обкладками), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух

Пусть заряды обкладок равны и . Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина — заряд положительной обкладки — называется зарядом конденсатора.

Пусть — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

  1. Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:
  2. Здесь — напряжённость поля положительной обкладки, — напряженность поля отрицательной обкладки, — поверхностная плотность зарядов на обкладке:

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

Рис. 1. Электрическое поле плоского конденсатора

  • Согласно принципу суперпозиции, для результирующего поля имеем:
  • Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):
  • Внутри конденсатора поле удваивается:
  • или
  • (4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4). Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями.

На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты: поле отличается от однородного и проникает в наружное пространство конденсатора.

Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно . Поскольку поле внутри конденсатора является однородным, разность потенциалов между обкладками равна произведению на (вспомните связь напряжения и напряжённости в однородном поле!):

(5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора.

Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости.

Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

(6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на В. Формула (6), таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора:

(7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?

  1. Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:
  2. (8)
  3. Соответственно, напряжение на конденсаторе:
  4. (9)
  5. Отсюда ёмкость плоского конденсатора с диэлектриком:
  6. (10)
  7. Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.
  8. Важное следствие формулы (10): заполнение конденсатора диэлектриком увеличивает его ёмкость.

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора , площадь обкладок .

  • Возьмём на второй обкладке настолько маленькую площадку, что заряд этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой
  • где — напряжённость поля первой обкладки:
  • Следовательно,

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила притяжения второй обкладки к первой складывается из всех этих сил , с которыми притягиваются к первой обкладке всевозможные маленькие заряды второй обкладки. При этом суммировании постоянный множитель вынесется за скобку, а в скобке просуммируются все и дадут . В результате получим:

  1. (11)
  2. Предположим теперь, что расстояние между обкладками изменилось от начальной величины до конечной величины . Сила притяжения пластин совершает при этом работу:

Знак правильный: если пластины сближаются , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины , то работа силы притяжения получается отрицательной, как и должно быть.

  • С учётом формул (11) и (7) имеем:
  • где
  • Это можно переписать следующим образом:
  • где
  • (12)

Работа потенциальной силы притяжения обкладок оказалась равна изменению со знаком минус величины . Это как раз и означает, что — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора.

  1. Используя соотношение , из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):
  2. (13)
  3. (14)
  4. Особенно полезными являются формулы (12) и (14).
  5. Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью . Сила притяжения обкладок уменьшится в раз, и вместо (11) получим:

При вычислении работы силы , как нетрудно видеть, величина войдёт в ёмкость , и формулы (12) — (14) останутся неизменными. Ёмкость конденсатора в них теперь будет выражаться по формуле (10).

Итак, формулы (12) — (14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

  • Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:
  • Но — объём конденсатора. Получаем:
  • (15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля , сосредоточенного в некотором объёме .

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина — энергия единицы объёма поля — называется объёмной плотностью энергии. Из формулы (15) получим:

(16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

  1. Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:
  2. (17)
  3. (18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/kondensator-energiya-elektricheskogo-polya/

План-конспект урока по физике (10 класс): Электроёмкость. Конденсаторы. Энергия заряженного конденсатора. | Социальная сеть работников образования

Тема урока: « Электроёмкость. Конденсаторы. Энергия заряженного конденсатора»

  • Цель урока:
  • Задачи урока:
  • ввести понятие «электрическая ёмкость системы проводников и её единицы»;
  • изучить плоский конденсатор и познакомить учащихся с формулой его электроёмкости;
  • получить формулу для расчёта энергии плоского конденсатора;
  • познакомить с применением конденсаторов.
  • Ход урока
  1. Введение понятия электроёмкости. (Изучение физической величины даётся по стандартному плану: какое свойство тел (явлений) характеризует данная величина; определение величины; формулы, которые связывают данную величину с другими; классифицирующий признак (скалярная или векторная величина, размерная или безразмерная, постоянная или изменяющаяся); единицы измерения величины; способы измерения величины.)
  1. Физический энциклопедический словарь: электрическая ёмкость, характеристика проводника,  количественная мера его способности удерживать электрический заряд.
  2. Учебник:
  3. Электроёмкость — физическая величина, характеризующая способность проводников накапливать электрический заряд.
  4. Электроёмкостью  двух проводников называют отношение заряда одного из проводников к разности потенциалов между ними: .

Чем больше электроёмкость, тем больший заряд скапливается на проводниках при одном и том же напряжении. Обращаем внимание, что сама электроёмкость не зависит ни от сообщённых проводникам зарядов, ни от возникающего между ними напряжения.

Единицей электроёмкости в СИ является фарад.

1 фарад – это электроёмкость двух проводников в том случае, если при сообщении им зарядов +1Кл и -1Кл между ними возникает разность потенциалов 1В:  1Ф=1Кл/В.

Из-за того что заряд в 1Кл очень велик, ёмкость 1Ф оказывается очень большой. Поэтому на практике часто используются доли этой  единицы: мкФ и пФ.

  1. Задание. На столах учащихся конденсаторы. Надо по маркировке конденсатора (U ,  C) определить какой заряд он может накопить. Решение записывается в тетради. Один ученик вызывается к доске.
  1. Конденсатор – устройство для накопления электрического заряда. Он представляет собой систему двух изолированных друг от друга проводников (обкладок конденсатора), разделённых слоем диэлектрика.
  • Демонстрация модели плоского конденсатора.

Источник: https://nsportal.ru/shkola/fizika/library/2020/02/01/elektroyomkost-kondensatory-energiya-zaryazhennogo-kondensatora

Ссылка на основную публикацию