Электрическое поле в проводнике с током и его источники — справочник студента

Электрический ток — направленное, упорядоченное движение электрических зарядов.

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные). Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.

Обрати внимание!

Условия существования электрического тока:

• наличие свободных электрических зарядов;• наличие электрического поля, которое обеспечивает движение зарядов;• замкнутая электрическая цепь. Электрическое поле создают источники электрического тока.

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.

Существуют различные виды источников тока:

• Механический источник тока — механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.

Электрическое поле в проводнике с током и его источники - Справочник студента

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.

 

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

• Световой источник тока — энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.

Электрическое поле в проводнике с током и его источники - Справочник студента

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

• Химический источник тока — в результате химических реакций внутренняя энергия преобразуется в электрическую.К нему относится, например, гальванический элемент. 

Электрическое поле в проводнике с током и его источники - Справочник студента

В цинковый сосуд Ц вставлен угольный стержень У, у которого имеется металлическая крышка М. Стержень помещён в полотняный мешочек, наполненный смесью оксида марганца с углём С. Пространство между цинковым корпусом и смесью оксида марганца с углём заполнено желеобразным раствором соли Р.

В результате химической реакции цинк приобретает отрицательный заряд, а угольный стержень — положительный заряд. Между заряженным стержнем и цинковым сосудом возникает электрическое поле.

В таком источнике тока уголь является положительным электродом, а цинковый сосуд — отрицательным электродом.

Из нескольких гальванических элементов можно составить батарею.

Электрическое поле в проводнике с током и его источники - Справочник студентаЭлектрическое поле в проводнике с током и его источники - Справочник студента

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

Электрическое поле в проводнике с током и его источники - Справочник студентаЭлектрическое поле в проводнике с током и его источники - Справочник студента Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой — отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В них используется раствор щёлочи и пластины: одна — из спрессованного железного порошка, а вторая — из пероксида никеля.    Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие. Чтобы электроэнергию доставить от источника до потребителя, необходимы соединительные проводники, а чтобы её поступлением можно было управлять, нужны рубильники, выключатели, кнопки и т.д.

Обрати внимание!

Источник электроэнергии, потребители электроэнергии, замыкающие устройства, соединённые между собой проводами, называют электрической цепью.

Чтобы в цепи существовал электрический ток, она должна быть замкнутой, т.е. состоять из проводников электричества. Если в каком-либо месте провод разорвётся, то ток в цепи прекратится. На этом основано действие выключателей.  

Обрати внимание!

Чертежи, на которых изображаются способы соединения электрических приборов в цепь, называют схемами.

Электрическое поле в проводнике с током и его источники - Справочник студента

Приборы на схемах обозначают условными знаками. Вот некоторые из них:

Гальванический элемент или аккумулятор Батарея элементов и аккумуляторов Ключ Электрическая лампочка накаливания Электрический звонок Резистор
Электрическое поле в проводнике с током и его источники - Справочник студента
Двигатель Генератор Мотор Клеммы Провод  Пересечение проводов без соединения Соединение проводов

Источники:

Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

http://www.fizika.ru/kniga/index.php?mode=paragraf&theme=09&id=9010http://files.school-collection.edu.ru/dlrstore/669ba06a-e921-11dc-95ff-0800200c9a66/3_8.swf

Источник: https://www.yaklass.ru/p/fizika/8-klass/elektricheskie-iavleniia-12351/elektricheskii-tok-elektricheskaia-tcep-galvanicheskie-elementy-akkumulia_-12359/re-74a97d55-2db7-45a6-947f-a227ea083058

Что такое электрический ток: определение, характеристики, виды

Открытия, связанные с электричеством, кардинально изменили нашу жизнь. Используя электрический ток как источник энергии, человечество сделало прорыв в технологиях, которые облегчили наше существование.

Сегодня электричество приводит в движение токарные станки, автомобили, управляет роботизированной техникой, обеспечивает связь. Этот список можно продолжать очень долго.

Даже трудно назвать отрасль, где можно обойтись без электроэнергии.

В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.

Электрическую энергию можно доставить практически везде:

  • к производственному цеху;
  • квартире;
  • на поле;
  • в шахту, под воду и т. д.

Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?

Что такое электрический ток?

Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

Как всё начиналось

Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений.

А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами.

Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Электрическое поле в проводнике с током и его источники - Справочник студентаРис. 1. Опыт с заряженными телами

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

Определение

В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами.

На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно.

То есть электрофорная машина является источником электричества.

Электрическое поле в проводнике с током и его источники - Справочник студентаРисунок 2. Электрофорная машина

Источники тока

Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

Характеристики

Электрический ток характеризуется величинами, которые описывают его свойства.

Сила и плотность тока

Для описания характеристики электричества часто используют термин «сила тока».

Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле.

Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).

1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).

Плотность тока  –  векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м2. Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».

Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.

Мощность

Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени.

По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U.

Единица измерения мощности – ватт (Вт).

Частота

Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.

Ток смещения

Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.

Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.

Виды тока

По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону.

Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного.

Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.

Классификация переменного тока

Классифицировать изменяющиеся во времени токи можно следующим образом:

  1. Синусоидальный, подчиняющийся синусоидальной функции во времени.
  2. квазистационарный – переменный, медленно изменяющийся во времени. Обычные промышленные токи являются квазистационарными.
  3. Высокочастотный – частота которого превышает десятки кГц.
  4. Пульсирующий – импульс которого периодически изменяется.
Читайте также:  Регулирование гражданско-правовых отношений - справочник студента

Различают также вихревые токи, которые возникают в проводнике при изменении магнитного потока. Блуждающие токи Фуко, как их ещё называют, не текут по проводам, а образуют вихревые контуры. Индукционный ток имеет ту же природу что и вихревой.

Дрейфовая скорость электронов

Электричество по металлическому проводнику распространяется со скоростью света. Но это не означает, что заряженные частицы несутся от полюса к полюсу с такой же скоростью.

Электроны в металлических проводниках встречают на своём пути сопротивление атомов, поэтому их реальное перемещение составляет всего 0,1 мм за секунду.

Реальная, упорядоченная скорость перемещения электронов в проводнике называется дрейфовой.

Если замкнуть проводником полюсы источника питания, то вокруг проводника молниеносно образуется электрическое поле. Чем больше ЭДС источников, тем сильнее проявляется напряжённость электрического поля. Реагируя на напряжённость, заряженные частицы вмиг принимают упорядоченное движение и начинают дрейфовать.

Направление электрического тока

Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

Электрический ток в различных средах

Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.

Электрическое поле в проводнике с током и его источники - Справочник студентаРис. 3. Электрический ток в металлах

В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.

В полупроводниках

В обычном состоянии у полупроводника нет свободных носителей зарядов.  Но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. Происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).

Под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. Возникает упорядоченное движение свободных зарядов. Такую проводимость называют электронно-дырочной.

В вакууме и газе

Электрический ток возможен и в ионизированном газе. Заряд переносится положительными и отрицательными ионами. Ионизация газов возможна под действием излучения или вследствие сильного нагревания. Под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).

Электрическое поле в проводнике с током и его источники - Справочник студентаРис 4. Электрический ток в газах

В вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. Носителями зарядов являются электроны. Для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.

Примером может служить работа вакуумной лампы или электронно-лучевая трубка.

В жидкостях

Оговоримся сразу – не все жидкости являются проводниками. Электрический ток возможен в кислотных, щёлочных и соляных растворах. Иначе говоря – в средах, где имеются заряженные ионы.

Если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). Под действием ЭДС катионы устремятся к катоду (минусу), а анионы к аноду. При этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. Такое явление называют электролизом.

Электрическое поле в проводнике с током и его источники - Справочник студентаРис. 5. Электроток в жидкостях

Для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6. Обратите внимание на вольтамперные характеристики (4 столбец).

Электрическое поле в проводнике с током и его источники - Справочник студентаРис. 6. Электрический ток в средах

Проводники электрического тока

Среди множества веществ, лишь некоторые являются проводниками. К хорошим проводникам относятся металлы. Важной характеристикой проводника является его удельное сопротивление.

Небольшое сопротивление имеют:

  • все благородные металлы;
  • медь;
  • алюминий;
  • олово;
  • свинец.

На практике наиболее часто применяют алюминиевые и медные проводники, так как они не слишком дорогие.

Электробезопасность

Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.

При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.

В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.

Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может вызвать поражение даже спустя несколько минут после отключения от сети.

Источник: https://www.asutpp.ru/chto-takoe-elektricheskiy-tok.html

Электрическое поле проводника с током

Господа, доброе всем время суток! Сегодня коротенечко рассмотрим затронутый в статье про силу тока вопрос, почему же лампочка вспыхивает мгновенно при столь малой скорости направленного движения заряженных частиц.

Речь пойдет, как уже многие догадались, об электрическом поле проводника с током. Мы попытаемся разобраться как это поле выглядит внутри и снаружи проводника и рассмотрим механизм его образования.

Итак, погнали!

На самом деле мы сейчас рассмотрим довольно нетривиальные вещи.

Дело в том, что когда речь заходит про электрическое поле часто возникает непонимание физики процессов и бесконечные споры о том, что же это такое, особенно если имеют место быть движущиеся заряды.

В ход идет мощная артиллерия из целого каскада уравнений Максвелла и прочих дивергенций, однако и это не всегда приводит к однозначному пониманию происходящего.

Скажу честно, сначала я вообще не хотел писать статью на данную тему и затрагивать рассмотрение этого вопроса, тем более, что в инженерной практике он не имеет большого значения. Однако, поразмыслив, все-таки я решил кратко рассмотреть его для полноты картины, разумеется, на максимально простом уровне.

Прежде всего зададимся вопросом – а что же нужно для того, чтобы имел место электрический ток? По сути мы уже ответили на этот вопрос в статье про  силу тока.

Нам нужно наличие свободных заряженных частиц – электронов или ионов, а также некоторой силы, вызывающей это упорядоченное движение. Эта сила – электрическое поле.

Да, именно благодаря электрическому полю и возникает электрический ток. 

Что именно такое электрическое поле, как оно создается, чем характеризуется и какие законы описывают поведение зарядов в нем мы рассмотрели вот в этой статье. На всякий случай еще раз напомню, что электрическое поле создается электрическими зарядами.

Итак, поле создается зарядами. Ок. Как же в итоге возникает ток в проводнике? Рассмотрим цепь, состоящую из проводника с нагрузкой и батарейки. Батарейка создает некоторое напряжение. На минусовой клемме батареи, очевидно, имеет место избыток электронов. Это минус и по определению там электронов больше, чем на плюсе.

Эти заряды создают вокруг себя поле. Но что делать, если длина проводника несколько километров? Ведь поле затухает пропорционально квадрату расстояния, как мы помним из закона Кулона. При замыкании цепи эти электроны с минусовой клеммы начинают действовать на близлежащие электроны в проводнике, толкать их в стороны.

Часть электронов будет двигаться вдоль оси проводника. Часть электронов достигнет поверхности проводника и скопится на ней. Образуется типа поверхностного заряда. Этот поверхностный заряд будет создавать поле в следующей участке проводника. Ну и так далее. Распространение поверхностного заряда иллюстрирует рисунок 1.

Электрическое поле в проводнике с током и его источники - Справочник студента

Рисунок 1 – Распространение поверхностного заряда

Дело в том, что распространяться этот самый заряд, ну, то есть, по сути поле, будет со скоростью света, которая, как известно, равна примерно 300 000 км/с. Очень быстро. Поэтому и загорится лампочка почти мгновенно. Это поле называется стационарным. Оно неизменно в течении времени. Да, заряды движутся. Но на их место приходят новые, точно такие же по величине.

Господа, как мы все помним из вот этой вот статьи для визуализации электрического поля и его наглядного представления принято использовать силовые линии. Как же выглядят силовые линии внутри проводника с током и снаружи от него? Ответ таков: внутри проводника с током силовые линии параллельны оси проводника, а снаружи — идут под углом к нему. Это показано на рисунке 2.

Электрическое поле в проводнике с током и его источники - Справочник студента

Рисунок 2 – Силовые линии проводника с током

Почему это так? Разберемся сначала с ситуацией вне проводника. Как мы уже выяснили на проводнике с током, на его поверхности, содержится поверхностный заряд. Причем (господа, внимание!),  этот заряд плавно уменьшается по длине проводника.

Ясно, что рядом с минусом будет намного больший избыток электронов, чем рядом с плюсом, на котором, наоборот, их недостаток.  То есть есть продольная составляющая вектора напряженности.

Кроме того, очевидно, есть составляющая вектора напряженности, перпендикулярная поверхности проводника. Поверхностный заряд ведь светит своей напряженностью вокруг себя.

Итого, по правилу сложения векторов получаем, что вне проводника поле направлено под углом к нему. Господа, для тех, кто вдруг забыл, напоминаю правило сложения векторов. Оно показано на рисунке 3.

Электрическое поле в проводнике с током и его источники - Справочник студента

Рисунок 3 – Правило сложения векторов

Внутри же проводника создаются такие условия, что силовые линии напряженности направлены вдоль его оси. Почему это так? Ответ может быть такой. Очевидно, что в проводнике с током сила тока одинакова по всей длине проводника.

Кто не верит — амперметр в лапки и вперед измерять. Это значит, что по всей длине проводника скорость зарядов одна и та же. Господа, это неопровержимо выведено в нашей самой первой статье про  силу тока.

Если скорость одна и та же, то одинакова и сила, с которой поле действует на заряды. А раз одинакова сила, то будет одна и та же напряженность поля во всех сечениях проводника.

Сила же зависит напрямую от напряженности! Причем одинакова сила будет при любой длине проводника. Это свидетельствует о том, что линии напряженности в проводнике параллельны оси проводника.

Уфф! Господа, чуть передохните и прочитайте предыдущий абзац еще разок. Знаю, там одно, цепляется за другое, потом другое за третье и в конце уже не помнишь, с чего начиналось. В таком случае лучше отдохнуть и перечитать еще разок перед тем, как читать дальше. Отдохнули? Тогда едем дальше!

Читайте также:  Падение тел - справочник студента

Остался еще один скользкий вопрос. Как же распределена плотность тока в проводнике с постоянным током? По идее она должна быть у поверхности чуть больше: там ведь существует поверхностный заряд, то есть более высокая концентрация электронов.

Однако в литературе я нигде не нашел ни подтверждения, ни опровержения данному доводу. Все почему-то обходят этот вопрос. Рассмотрению подлежит только распределение плотности  в случае переменного тока, скин эффект там и прочее. Но здесь ведь это ни при чем.

Здесь может быть только кулоновское расталкивание зарядов ближе к поверхности проводника… Господа, если у кого есть соображения по этому поводу, пожалуйста, напишите в комментарии.  Но что можно сказать однозначно, даже если и расталкивание есть, то оно минимально.

На практике им пренебрегают, считая, что постоянный ток целиком, с одинаковой плотностью, течет по всему сечению проводника.

Но вернемся еще раз к вопросу, почему ток в цепи возникает практически мгновенно. Что бы стало совсем понятно, приведем аналогию из области гидравлики. Не пугайтесь, господа. Я в тоже в этой прекрасной науке мало шарю.

Только если на практическом уровне: починить кран, заменить трубу, прикрутить вентиль. Так что оставьте ваши страхи, никаких уравнений Навье-Стокса и прочих Эйлеров не будет!  Возьмем водопровод в вашем доме. Вообще, как ни странно, очень многие вещи в электричестве можно лучше понять на примере этого самого водопровода.

По сути протекание тока в проводниках чем-то схоже с протеканием воды в трубах.

Итак, водопровод наполнен водой (проводник наполнен свободными электронами). В системе водопровода есть давление (к проводнику приложено напряжение, в проводнике есть электрическое поле). Мы открываем кран (замыкаем электрическую цепь). Из крана начинает течь вода.

Внимание, господа! В момент открывания крана начинает течь не та вода, которая на ближайшей водокачке.

А та, которая уже в трубах, та, которая рядом с вами, и начинает она течь мгновенно (лампочка загорается мгновенно) при открытии крана, не смотря на то, что скорость течения воды может быть небольшой (мы помним наши выводы про скорость движения электронов).

Аналогия полнейшая, как мы видим. А что это значит – это значит, что даже если вы электронщик/электрик, сантехнику знать лишним тоже не будет! Эти две области имеют в себе больше общего, чем может показаться на первый неискушенный взгляд!

Итак, мы рассмотрели вопрос что же вызывает протекание тока в проводнике, объяснили, почему ток возникает во всей цепи практически мгновенно не смотря на крайне низкую дрейфовую скорость перемещения зарядов и показали, как формируется поле в проводнике с постоянным током. Господа, полагаю, на сегодня достаточною. Удачи вам всем и до скорых встреч!

Источник: http://myelectronix.ru/postoyannyy-tok/18-jelektricheskoe-pole-provodnika-s-tokom

Электрический ток

Электрический ток — направленное движение заряженных частиц в электрическом поле. Заряженными частицами могут являться электроны или ионы (заряженные атомы). Атом, потерявший один или несколько электронов, приобретает положительный заряд. — Анион (положительный ион).

Атом, присоединивший один или несколько электронов, приобретает отрицательный заряд. — Катион (отрицательный ион).
Ионы в качестве подвижных заряженных частиц рассматриваются в жидкостях и газах.

В металлах носителями заряда являются свободные электроны, как отрицательно заряженные частицы.

В полупроводниках рассматривают движение (перемещение) отрицательно заряженных электронов от одного атома к другому и, как результат, перемещение между атомами образовавшихся положительно заряженных вакантных мест — дырок.

За направление электрического тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих пор. Так же и напряжённость электрического поля определена для положительного пробного заряда.

На любой единичный заряд q в электрическом поле напряженностью E действует сила F = qE, которая перемещает заряд в направлении вектора этой силы.

Электрическое поле в проводнике с током и его источники - Справочник студента

На рисунке показано, что вектор силы F— = -qE, действующей на отрицательный заряд -q, направлен в сторону противоположную вектору напряжённости поля, как произведение вектора E на отрицательную величину.

Следовательно, отрицательно заряженные электроны, которые являются носителями зарядов в металлических проводниках, в реальности имеют направление движения, противоположное вектору напряжённости поля и общепринятому направлению электрического тока.

Электрическое поле в проводнике с током и его источники - Справочник студента

  • Количество заряда Q = 1 Кулон, перемещённое через поперечное сечение проводника за время t = 1 секунда, определится величиной тока I = 1 Ампер из соотношения:
  • I = Q/t.
  • Отношение величины тока I = 1 Aмпер в проводнике к площади его поперечного сечения S = 1 m 2 определит плотность тока j = 1 A/m2:
  • j = I/S
  • Работа A = 1 Джоуль, затраченная на транспортировку заряда Q = 1 Кулон из точки 1 в точку 2 определит значение электрического напряжения U = 1 Вольт, как разность потенциалов φ1 и φ2 между этими точками из расчёта:
  • U = A/Q = φ1 — φ2
  • Электрический ток может быть постоянным или переменным.
  • Постоянный ток — электрический ток, направление и величина которого не меняются во времени.
  • Переменный ток — электрический ток, величина и направление которого меняются с течением времени.

Ещё в 1826 году немецкий физик Георг Ом открыл важный закон электричества, определяющий количественную зависимость между электрическим током и свойствами проводника, характеризующими их способность противостоять электрическому току.

Эти свойства впоследствии стали называть электрическим сопротивлением, обозначать буквой R и измерять в Омах в честь первооткрывателя.

Закон Ома в современной интерпретации классическим соотношением U/R определяет величину электрического тока в проводнике исходя из напряжения U на концах этого проводника и его сопротивления R:

I = U/R

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток. В металлических проводниках носителями зарядов являются свободные электроны. С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.

При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.

Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. — Электролиз. Анионы — положительные ионы. Перемещаются к отрицательному электроду — катоду. Катионы — отрицательные ионы.

Перемещаются к положительному электроду — аноду. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах — плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах — лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению. Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры. С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.

При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники — изоляторами.
Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.

При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок.

Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле. При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация.

Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.
В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.

В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного In и дырочного Ip токов.

Электрическое поле в проводнике с током и его источники - Справочник студента

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др.
Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Источник: https://tel-spb.ru/current/

Электрический ток и его источники

Электрическим током называется нехаотическое (упорядоченное), коллективное движение заряженных частиц (электронов или ионов). Заряженными могут быть и макрочастицы, например, капли дождя во время грозового разряда.

Электрический ток возникает в твердых, жидких и газообразных веществах под действием силы электрического поля, а для создания электрического поля в цепи используют различные источники электрического тока.
Электрическое поле в проводнике с током и его источники - Справочник студента

Чтобы поддерживать ток в электрических цепях долгое время необходимо удерживать стабильное значение электрического поля. Именно в этом заключается роль источников электрического тока.

Во всех источниках происходит работа по разделению отрицательно и положительно заряженных частиц.

Частицы с зарядами разных знаков скапливаются у полюсов источника тока (“плюса” и “минуса”), которые обозначены специальными клеммами.

Между полюсами возникает разность потенциалов и электрическое поле, которое после подключения источника проводниками к электрической цепи, порождает электрический ток.

Первый вариант работающей батареи сконструировал итальянский ученый Алессандро Вольта в 1798 г. А в 1859 г. французский физик Гастон Планте свинцово-кислотные клетки — ключевой элемент аккумулятора для автомобиля. Кстати, автомобиль появился только через 26 лет.

Таким образом, внутри источника тока совершается работа по разделению электрических зарядов, без использования силового действия электрического поля. Силы, совершающие работу по сортировке (разделению) зарядов, по определению называются сторонними силами. Перечислим некоторые примеры сторонних сил:

Простейший пример — это электрофорная машина, диски которой приводятся во вращение рукой. Современные генераторы электрического тока преобразуют механическую энергию вращения вала от двигателей внутреннего сгорания или от паровых и гидротурбин;

Рис. 1. Электрофорная машина:.

Такие источники называют термоэлементами. Примером может служить так называемая термопара, то есть когда берутся две проволоки из разных металлов, делаются два спая, один из которых нагревают, а другой охлаждают.

В результате появляется напряжение. Величина напряжения таких источников мала, но в они используются в качестве термодатчиков.

Геотермальные станции, работающие в местах, где имеются природные источники горячей воды, также относятся к этому виду источников. ;

Энергия фотонов света переходит в электрическую энергию, когда твердое тело обладает свойствами полупроводника. К таким веществам относятся, например, кремний, германий, арсенид галлия. Солнечные батареи, которые были в первую очередь разработаны для космических кораблей, сейчас используются повсеместно;

Читайте также:  Общая характеристика способностей человека - справочник студента

Набор определенных химических веществ может вступать в реакции, в результате которых внутренняя энергия переходит в электрическую.

Такие источники тока называются гальваническими элементами в честь итальянского ученого Луиджи Гальвани. Батарейки для современных гаджетов, телевизионных пультов, все это — гальванические элементы.

Батарейки используются один раз, так как после окончания химического процесса электроды теряют способность к накоплению зарядов;

Рис. 2. Гальванический элемент:.

Данные источники тока выделены в отдельный класс, хотя механизм получения электрической энергии у них тоже основан на химических реакциях. В этих источниках электроды не расходуются. После подзарядки от электрической сети, источники снова возобновляют механизм химического воспроизводства электрической энергии.

Рис. 3. Примеры аккумуляторов:.

В таблице источников электрического тока представлены основные виды источников и механизмы их работы.

Источник электрического тока Механизм разделения электрических зарядов
Электрофорная машина Механическая энергия вращения
Термоэлементы Тепловая энергия
Солнечные батареи, фотоэлементы Энергия фотонов света
Гальванические элементы, батарейки Химические реакции
Аккумуляторы Химические реакции
Электромагнитные генераторы Механическая энергия вращения

Постоянно предпринимаются попытки использовать механическую энергию человека для выработки электроэнергии. Например, был предложен вариант скакалки, у которой внутри цилиндрической ручки имеются полости. В них размещены аккумуляторы. Согласно расчетам 20-25 прыжков со скакалкой позволят заряжать четыре аккумуляторных батарейки.

Итак, мы узнали полезную информацию об электрическом токе и его источниках.

Внутри источников тока совершается работа по разделению зарядов с помощью различных механизмов неэлектрического происхождения: химического, теплового, светового, механического.

Накопленный заряд создает электрическое поле. Батареи и аккумуляторы применяются в различных отраслях деятельности — от бытовой до космической техники.

Средняя оценка: 4.6. Всего получено оценок: 242.

Источник: https://obrazovaka.ru/fizika/elektricheskiy-tok-i-ego-istochniki-tablica.html

Электрическое поле и электрический ток: напряженность и сила

Взаимодействие электрических зарядов объясняется тем, что вокруг каждого заряда существует электрическое поле.

Электрическое поле

Электрическое поле заряда – это материальный объект, оно непрерывно в пространстве и способно действовать на другие электрические заряды. Электрическое поле неподвижных зарядов называется электростатическим. Электростатическое поле создается только электрическими зарядами, существует в пространстве, окружающем эти заряды и неразрывно с ними связано.

Если к электроскопу, не касаясь его оси, поднести на некотором расстоянии заряженную палочку, то стрелка все равно будет откланяться. Это и есть действие электрического поля.

Напряженность электрического поля

Заряды, находясь на некотором расстоянии один от другого, взаимодействуют. Это взаимодействие осуществляется посредством электрического поля.

Наличие электрического поля можно обнаружить, помещая в различные точки пространства электрические заряды.

  Если на заряд в данной точке действует электрическая сила, то это означает, что в данной точке пространства существует электрическое поле. Графически силовые поля изображают силовыми линиями.

Силовая линия – это линия, касательная в каждой точке которой совпадает с вектором напряженности электрического поля в этой точке.

Напряженность электрического поля – это физическая величина, численно равная силе, действующей на единичный заряд, помещенный в данную точку поля. За направление вектора напряженности принимают направление силы, действующей на точечный положительный заряд.

Однородное электрическое поле – это такое поле, во всех точках которого напряженность имеет одно и то же абсолютное значение и направление. Приблизительно однородным является электрическое поле между двумя разноименно заряженными металлическими пластинами. Силовые линии такого поля являются прямыми одинаковой густоты.

Потенциал. Разность потенциалов. Кроме  напряженности, важной характеристикой электрического поля является потенциал j.

Потенциал j – это энергетическая характеристика электрического поля, тогда как напряженность E – это его силовая характеристика, потому что потенциал равен потенциальной энергии, которой обладает единичный заряд в данной точке поля, а напряженность равна силе, с которой поле действует на этот единичный заряд.

Диэлектрики в электрическом поле

Диэлектриками или изоляторами называются тела, которые не могут проводить через себя электрические заряды. Это объясняется отсутствием в них свободных зарядов.

Если одни конец диэлектрика внести в электрическое поле, то перераспределения зарядов не произойдет, т. к. в диэлектрике нет свободных носителей заряда. Оба конца диэлектрика будут нейтральны.

Притяжение незаряженного тела из диэлектрика к заряженному телу объясняется тем, что в электрическом поле происходит поляризация диэлектрика, т. е.

смещение в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества.

Полярные и неполярные диэлектрики

К неполярным относятся диэлектрики, в атомах или молекулах которых центр отрицательно заряженного электронного облака совпадает с центром положительного атомного ядра. Например, инертные газы, кислород, водород, бензол.

Полярные диэлектрики состоят из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. Например, спирты, вода. Их молекулы можно рассматривать как совокупность двух точечных зарядов, равных по модулю и противоположных по знаку, находящихся на некотором расстоянии друг от друга. Такую в целом нейтральную систему называют электрическим диполем.

Проводники в электрическом поле

Проводниками называются тела, способные пропускать через себя электрические заряды.  Это свойство проводников объясняется наличием в них свободных носителей заряда. Примерами проводников могут быть металлы и растворы электролитов.

Если взять металлический проводник и один его конец поместить в электрическое поле, то на данном конце появится электрический заряд.

Согласно закону сохранения электрического заряда, на другом конце проводника появится равный ему по модулю и противоположный по знаку заряд.

Явление разделения разноименных зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией.

При внесении в электрическое поле проводника свободные заряды в нем приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Движение зарядов прекращается только тогда, когда напряженность электрического поля внутри проводника становится равной нулю.

Свободные заряды перестают перемещаться вдоль поверхности проводящего тела при достижении такого распределения, при котором вектор напряженности электрического поля в любой точке перпендикулярен поверхности тела.

  Электростатическое поле внутри проводника равно нулю, весь статический заряд проводника сосредоточен на его поверхности.

Электроемкость и конденсатор

Электроемкость – количественная мера способности проводника удерживать заряд.

Простейшие способы разделение разноименных электрических зарядов – электризация и электростатическая индукция – позволяют получить на поверхности тел не большое количество свободных электрических зарядов. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы.

Конденсатор – это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют плоский конденсатор.

 Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины.

Вне пластин напряженность электрического поля равна нулю, т. к.

равные заряды разного знака на двух пластинах создают вне пластин электрические поля, напряженности которых равны по модулю, но противоположны по направлению.

Электрический ток

Это направленное движение заряженных частиц. В металлах носителями тока являются свободные электроны, в электролитах – отрицательные и положительные ионы, в полупроводниках – электроны и дырки, в газах – ионы и электроны. Количественной характеристикой тока является сила тока.

Источниками могут служить – гальванический элемент(происходят хим. реакции и внутренняя энергия, превращается в электрическую) и аккумулятор(для зарядки через него пропускают постоянный ток, в результате химической реакции один электрод становиться положительно заряженным, другой – отрицательно.

Действия электрического тока: тепловое, химическое, магнитное.

Направление электрического тока: от + к –

Направленное движение заряженных частиц

Поэтому достаточным условием для существования тока является наличие электрического поля и свободных носителей заряда.  О наличии тока можно судить по явлениям, которые его сопровождают: Проводник, по которому течет ток, нагревается. Электрический ток может изменять химический состав проводника.

Силовое воздействие на соседние точки и намагниченные тела.

При существовании электрического поля внутри проводника, на концах его существует разность потенциалов. Если она не меняется, то в проводнике устанавливается постоянный электрический ток.

Сила тока

Сила тока – отношение заряда, пронесенного через поперечное сечение проводника за интервал времени, к этому интервалу времени.

Сила тока, как и заряд, величина скалярная. Она может быть как положительной, так и отрицательной. За положительное направление силы тока принято движение положительных зарядов. Если с течением времени сила тока не меняется, то ток называется постоянным.

Электродвижущая сила

Для того, чтобы в проводнике существовал электрический ток длительное время, необходимо поддерживать неизменными условия, при которых возникает электрический ток.

Во внешней цепи электрические заряды движутся под действием сил электрического поля. Но, чтобы поддерживать разность потенциалов на концах внешней цепи, необходимо перемещать электрические заряды внутри источника тока против сил электрического поля. Такое перемещение может осуществляться только под действием сил неэлектростатической природы.

Силы, вызывающие перемещение электрических зарядов внутри источника постоянного тока против направления действия сил электростатического поля, называются сторонними силами.

Сторонние силы в гальваническом элементе или аккумуляторе возникают в результате электрохимических процессов, происходящих на границе раздела электрод – электролит.

В машине постоянного тока сторонней силой является сила Лоренца.

  • Последовательное и параллельное соединение проводников
  • Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно.
  • При последовательном соединении электрическая цепь не имеет разветвлений, все проводники включают в цепь поочередно друг за другом.
  • Сила тока во всех проводниках одинакова, так как в проводниках электрический заряд не накапливается и через поперечное сечение проводника за определенное время проходит один и тот же заряд.
  • При последовательном соединении проводников их общее электрическое сопротивление равно сумме электрических сопротивлений всех проводников.

При параллельном соединении электрическая цепь имеет разветвления (точку разветвления называют узлом). Начала и концы проводников имеют общие точки подключения к источнику тока.

При этом напряжение на всех проводниках одинаково. Сила тока равна сумме сил токов во всех параллельно включенных проводниках, так как в узле электрический заряд не накапливается, поступающий за единицу времени в узел заряд равен заряду, уходящему из узла за то же время.

Соединение источников тока

Соединение источников тока

Химические источники э. д. с. (аккумуляторы, элементы) включаются между собой последовательно, параллельно и смешанно.

Последовательное соединение источников э. д. с. На рисунке представлены три соединенных между собой аккумулятора. Такое соединение аккумуляторов, когда минус каждого предыдущего источника соединен с плюсом последующего источника, называется последовательным соединением. Группа соединенных между собой аккумуляторов или элементов называется батареей.

Источник: https://fireman.club/presentations/elektricheskoe-pole-elektricheskij-tok/

Ссылка на основную публикацию
Adblock
detector