Дифракционная длина — справочник студента

Решение задач по теме «Дифракционная решетка»

1)Дифракционная решетка, постоянная которой равна 0,004 мм, освещается светом с длиной волны 687 нм. Под каким углом к решетке нужно проводить наблюдение, чтобы видеть изображение спектра второго порядка.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

2)На дифракционную решетку, имеющую 500 штрихов на 1 мм, падает монохроматический свет длиной волны 500 нм. Свет падает на решетку перпендикулярно. Какой наибольший порядок спектра можно наблюдать?

3)Дифракционная решетка расположена параллельно экрану на расстоянии 0,7 м от него. Определите количество штрихов на 1 мм для этой дифракционной решетки, если при нормальном падении на нее светового пучка с длиной волны 430 нм первый дифракционный максимум на экране находится на расстоянии 3 см от центральной светлой полосы. Считать, что sinφ ≈ tgφ.

4)Дифракционная решетка, период которой равен 0,005 мм, расположена параллельно экрану на расстоянии 1,6 м от него и освещается пучком света длиной волны 0,6 мкм, падающим по нормали к решетке. Определите расстояние между центром дифракционной картины и вторым максимумом. Считать, что sinφ ≈ tgφ.

5)Дифракционная решетка с периодом 10-5 м расположена параллельно экрану на расстоянии 1,8 м от него. Решетка освещается нормально падающим пучком света длиной волны 580 нм. На экране на расстоянии 20.88 см от центра дифракционной картины наблюдается максимум освещенности. Определите порядок этого максимума. Считать, чтоsinφ ≈ tgφ.

7)Спектры второго и третьего порядков в видимой области дифракционной решетки частично перекрываются друг с другом. Какой длине волны в спектре третьего порядка соответствует длина волны 700 нм в спектре второго порядка?

9)Какова ширина всего спектра первого порядка (длины волн заключены в пределах от 380 нм до 760 нм), полученного на экране, отстоящем на 3 м от дифракционной решетки с периодом 0,01 мм?

10)На дифракционную решетку падает нормально параллельный пучок белого света.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Адаптация в психологии - справочник студента

Оценим за полчаса!

Между решеткой и экраном вплотную к решетке расположена линза, которая фокусирует свет, проходящий через решетку, на экране.

Чему равно число штрихов на 1 см, если расстояние до экрана 2 м, а ширина спектра первого порядка 4 см. Длины красной и фиолетовой волн соответственно равны 800 нм и 400 нм. Считать, что sinφ ≈ tgφ.

11)Плоская монохроматическая световая волна с частотой ν = 8•1014 Гц падает по нормали на дифракционную решетку с периодом 6 мкм. Параллельно решетке позади нее размещена собирающая линза. Дифракционная картина наблюдается в задней фокальной плоскости линзы. Расстояние между ее главными максимумами 1 и 2 порядков равно 16 мм. Найдите фокусное расстояние линзы. Считать, что sinφ ≈ tgφ.

12)Какова должна быть общая длина дифракционной решетки, имеющей 500 штрихов на 1 мм, чтобы с ее помощью разрешить две линии спектра с длинами волн 600,0 нм и 600,05 нм?

14)Определите разрешающую способность дифракционной решетки, период которой равен 1,5 мкм, а общая длина 12 мм, если на нее падает свет с длиной волны 530 нм.

15)Определите разрешающую способность дифракционной решетки, содержащей 200 штрихов на 1 мм, если ее общая длина равна 10 мм. На решетку падает излучение с длиной волны 720 нм.

16)Какое наименьшее число штрихов должна содержать решетка, чтобы в спектре первого порядка можно было разрешить две желтые линии натрия с длинами волн 589 нм и 589,6 нм. Какова длина такой решетки, если постоянная решетки 10 мкм.

17)Определите число открытых зон при следующих параметрах: R =2 мм; a=2.5 м; b=1.5 м  а) λ=0.4 мкм.  б) λ=0.76 мкм

18)Диафрагма диаметром 1 см освещается зеленым светом с длиной волны 0,5 мкм. На каком расстоянии от диафрагмы будет справедливо приближение геометрической оптики

19)Щель размером 1,2 мм освещается зеленым светом с длиной волны 0,5 мкм. Наблюдатель расположен на расстоянии 3 м от щели. Увидит ли он дифракционную картину.

20)Экран расположен на расстоянии 50 см от диафрагмы, которая освещается желтым светом с длиной волны 589 нм от натриевой лампы. При каком диаметре диафрагмы будет справедливо приближение геометрической оптики.

21)Щель размером 0,5 мм освещается зеленым светом от лазера с длиной волны 500 нм. На каком расстоянии от щели можно отчетливо наблюдать дифракционную картину.

 Решение задач по теме «Дифракционная решетка»

1)Дифракционная решетка, постоянная которой равна 0,004 мм, освещается светом с длиной волны 687 нм. Под каким углом к решетке нужно проводить наблюдение, чтобы видеть изображение спектра второго порядка.

Дифракционная длина - Справочник студента

Дифракционная длина - Справочник студентаДифракционная длина - Справочник студентаДифракционная длина - Справочник студента

2)На дифракционную решетку, имеющую 500 штрихов на 1 мм, падает монохроматический свет длиной волны 500 нм. Свет падает на решетку перпендикулярно. Какой наибольший порядок спектра можно наблюдать?

Дифракционная длина - Справочник студента Дифракционная длина - Справочник студента Дифракционная длина - Справочник студента Дифракционная длина - Справочник студента Дифракционная длина - Справочник студента

3)Дифракционная решетка расположена параллельно экрану на расстоянии 0,7 м от него. Определите количество штрихов на 1 мм для этой дифракционной решетки, если при нормальном падении на нее светового пучка с длиной волны 430 нм первый дифракционный максимум на экране находится на расстоянии 3 см от центральной светлой полосы. Считать, что sinφ ≈ tgφ.

Формула дифракционной решетки для малых углов   тангенс угла = р-ние от ц максимума / р-ние до экрана период решетки число штрихов единицу длины ( на мм)  

4)Дифракционная решетка, период которой равен 0,005 мм, расположена параллельно экрану на расстоянии 1,6 м от него и освещается пучком света длиной волны 0,6 мкм, падающим по нормали к решетке. Определите расстояние между центром дифракционной картины и вторым максимумом. Считать, что sinφ ≈ tgφ.

5)Дифракционная решетка с периодом 10-5 м расположена параллельно экрану на расстоянии 1,8 м от него. Решетка освещается нормально падающим пучком света длиной волны 580 нм. На экране на расстоянии 20.88 см от центра дифракционной картины наблюдается максимум освещенности. Определите порядок этого максимума. Считать, чтоsinφ ≈ tgφ.

6)При помощи дифракционной решетки с периодом 0,02 мм получено первое дифракционное изображение на расстоянии 3,6 см от центрального и на расстоянии 1,8 м от решетки. Найдите длину световой волны.

7)Спектры второго и третьего порядков в видимой области дифракционной решетки частично перекрываются друг с другом. Какой длине волны в спектре третьего порядка соответствует длина волны 700 нм в спектре второго порядка?

8)Плоская монохроматическая волна с частотой 8•1014 Гц падает по нормали на дифракционную решетку с периодом 5 мкм. Параллельно решетке позади нее размещена собирающая линза с фокусным расстоянием 20 см. Дифракционная картина наблюдается на экране в фокальной плоскости линзы. Найдите расстояние между ее главными максимумами 1 и 2 порядков. Считать, что sinφ ≈ tgφ.

9)Какова ширина всего спектра первого порядка (длины волн заключены в пределах от 380 нм до 760 нм), полученного на экране, отстоящем на 3 м от дифракционной решетки с периодом 0,01 мм?

Читайте также:  Трудности классической теории электропроводности - справочник студента

10)На дифракционную решетку падает нормально параллельный пучок белого света.

Между решеткой и экраном вплотную к решетке расположена линза, которая фокусирует свет, проходящий через решетку, на экране.

Чему равно число штрихов на 1 см, если расстояние до экрана 2 м, а ширина спектра первого порядка 4 см. Длины красной и фиолетовой волн соответственно равны 800 нм и 400 нм. Считать, что sinφ ≈ tgφ.

11)Плоская монохроматическая световая волна с частотой ν = 8•1014 Гц падает по нормали на дифракционную решетку с периодом 6 мкм. Параллельно решетке позади нее размещена собирающая линза. Дифракционная картина наблюдается в задней фокальной плоскости линзы. Расстояние между ее главными максимумами 1 и 2 порядков равно 16 мм. Найдите фокусное расстояние линзы. Считать, что sinφ ≈ tgφ.

  • 12)Какова должна быть общая длина дифракционной решетки, имеющей 500 штрихов на 1 мм, чтобы с ее помощью разрешить две линии спектра с длинами волн 600,0 нм и 600,05 нм?

13)Дифракционная решетка с периодом 10-5 м имеет 1000 штрихов. Можно ли с помощью этой решетки в спектре первого порядка разрешить две линии спектра натрия с длинами волн 589.0 нм и 589,6 нм?

14)Определите разрешающую способность дифракционной решетки, период которой равен 1,5 мкм, а общая длина 12 мм, если на нее падает свет с длиной волны 530 нм.

15)Определите разрешающую способность дифракционной решетки, содержащей 200 штрихов на 1 мм, если ее общая длина равна 10 мм. На решетку падает излучение с длиной волны 720 нм.

16)Какое наименьшее число штрихов должна содержать решетка, чтобы в спектре первого порядка можно было разрешить две желтые линии натрия с длинами волн 589 нм и 589,6 нм. Какова длина такой решетки, если постоянная решетки 10 мкм.

17)Определите число открытых зон при следующих параметрах: R =2 мм; a=2.5 м; b=1.5 м  а) λ=0.4 мкм.  б) λ=0.76 мкм

18)Диафрагма диаметром 1 см освещается зеленым светом с длиной волны 0,5 мкм. На каком расстоянии от диафрагмы будет справедливо приближение геометрической оптики

19)Щель размером 1,2 мм освещается зеленым светом с длиной волны 0,5 мкм. Наблюдатель расположен на расстоянии 3 м от щели. Увидит ли он дифракционную картину.

20)Экран расположен на расстоянии 50 см от диафрагмы, которая освещается желтым светом с длиной волны 589 нм от натриевой лампы. При каком диаметре диафрагмы будет справедливо приближение ге ометрической оптики.

21)Щель размером 0,5 мм освещается зеленым светом от лазера с длиной волны 500 нм. На каком расстоянии от щели можно отчетливо наблюдать дифракционную картину.

Источник: https://xn--j1ahfl.xn--p1ai/library/zadachi_na_temu__difraktcionnaya_reshetka_174257.html

Дифракционный предел разрешения оптических инструментов

Случай дифракции света с препятствием, имеющим открытую малую часть 1-й зоны Френеля, представляет особый интерес для практики.

Дифракционная картина в данном случае m=R2Lλ≪1  или R2≪Lλ, наблюдается при больших расстояниях. Когда R=1 мм, λ=550 нм, тогда расстояние L будет более двух метров. Такие проведенные в далекую точку лучи считаются параллельными.

Данный случай рассматривается как дифракция в параллельных лучах или дифракция Фраунгофера.

Дифракция Фраунгофера. Формулы

Определение 1

Главное условие дифракции Фраунгофера – это наличие зон Френеля, проходящих через точку волны, являющихся плоскими относительно друг друга.

При расположении собирающей линзы за препятствием прохождения лучей под углом θ они сходятся в некоторой точке плоскости. Это показано на рисунке 3.9.1. Отсюда следует, что любая точка в фокальной плоскости линзы эквивалентна бесконечно удаленной точке в отсутствии линзы.

Дифракционная длина - Справочник студента

Рисунок 3.9.1. Дифракция в параллельных лучах. Зеленая кривая – распределение интенсивности в фокальной плоскости (масштаб увеличен по оси ох).

Теперь доступна дифракционная картина Фраунгофера, располагаемая в фокальной плоскости линзы. Исходя из геометрической оптики, фокус должен иметь линзу с точечным изображением удаленного предмета. Изображение такого предмета размывается по причине наличия дифракции. Это и есть проявление волновой природы света.

Оптическая иллюзия не дает точечного изображения.

Если дифракция Фраунгофера с круглым отверстием диаметра D имеет дифракционное изображение, состоящее из диска Эйри, то на него приходится около 85% энергии света с окружающими его светлыми и темными кольцами. Это показано на рисунке 3.9.2. Полученное пятно принимают за изображение точечного источника и рассматривают как дифракцию Фраунгофера на отверстии.

Определение 2

Для определения радиуса центрального пятна фокальной плоскости линзы используется формула r=1,22λDF.

Оправа линзы обладает свойством дифракции света, если лучи падают на нее, то есть выполняет роль экрана. Тогда D обозначается как диаметр линзы.

Дифракционная длина - Справочник студента

Рисунок 3.9.2. Дифракционное изображение точечного источника (дифракция на круглом отверстии). В центральное пятно попадает около 85% энергии света.

Дифракционные изображения имеют очень маленькие размеры.

Центральное светлое пятно в фокальной плоскости с диаметром линзы D=5 см, фокусным расстоянием F=50 см, длиной волны в монохроматическом свете λ=500 нм имеет значение около 0,006 мм.

Сильное искажение маскируется в фотоаппаратах, проекторах по причине несовершенной оптики. Только высокоточные астрономические приборы могут реализовать дифракционный предел качества изображений.

Дифракционное размытие двух близко расположенных точек может дать результат наблюдения за одной точкой.

Когда астрономический телескоп настроен на наблюдение за двумя близкими звездами с угловым расстоянием ψ, то дефекты и аберрации устраняются, за счет этого фокальная плоскость объектива выдает дифракционные изображения звезд. Это рассматривается в качестве дифракционного предела объектива.

Дифракционная длина - Справочник студента

Рисунок 3.9.3. Дифракционные изображения двух близких звезд в фокальной плоскости объектива телескопа.

Вышеуказанный рисунок объясняет, что расстояние Δl между центрами дифракционных изображений звезд превышает значение радиуса r центрального светлого пятна. Данный случай позволяет воспринимать изображение раздельно, значит, есть возможность видеть одновременно две близко расположенные звезды.

Если уменьшить угловое расстояние ψ, тогда произойдет перекрывание, что не позволит видеть сразу две близкие звезды. В конце XIX века Дж.

Релей предложил считать разрешение условно полным при расстоянии между центрами изображений Δl равно радиусу r Диска Эйри. Рисунок 3.9.4. подробно показывает данный процесс.

Равенство Δl = r считают критерием решения Релея. Отсюда следует, что Δlmin=ψminċF=1,22λDF или ψmin=1,22λD.

Если телескоп имеет диаметр объектива D=1 м, тогда есть возможность разрешения двух звезд при нахождении на угловом расстоянии ψmin=6,7ċ10–7 рад (для λ=550 нм). Так как разрешающая способность не может быть более значения ψmin, то ограничение производится с помощью дифракционного предела космического телескопа, а по причине атмосферных искажений.

Дифракционная длина - Справочник студента

Рисунок 3.9.4. Предел решения по Релею. Красная кривая – распределение суммарной интенсивности света.

Начиная с 1990 года, космический телескоп Хаббла был выведен на орбиту с зеркалом, имеющим диаметр D=2,40 м. Предельным угловым разрешением телескопа на длине волны λ=550 нм считают значение ψmin=2,8ċ10–7 рад. Работа космического телескопа не зависит от атмосферных возмущений. Следует ввести величину R, которая обратная величине предельного угла ψmin.

Определение 3

Иначе говоря, величина называется силой телескопа и записывается как R=1ψmin=D1,22λ.

Чтобы увеличить разрешающую способность телескопа, увеличивают размер объектива. Эти свойства применимы для глаз. Его работа аналогична телескопу. Диаметр зрачка dзрвыступает в роли D. Отсюда предположим, что dзр=3 мм, λ=550 нм, тогда для предельного углового разрешения глаза принимаем формулу ψгл=1,22λdзр=2,3ċ10−4 рад=47''≈1'.

Результат оценивается с помощью разрешающей способности глаза, которая выполняется, учитывая размер светочувствительных элементов сетчатки. Делаем вывод: световой пучок с диаметром D и длиной волны λ, благодаря волновой природе света, испытывает дифракционное уширение. Угловая полуширина φ пучка относится к порядку λD, тогда запись полной ширины пучка d на расстоянии L примет вид d≈D+2λDL.

На рисунке 3.9.5. отчетливо видно, что при удалении от препятствия происходит трансформация пучка света.

Дифракционная длина - Справочник студента

Рисунок 3.9.5. Пучок света, расширяющийся вследствие дифракции. Область I – понятие луча света, законы геометрической оптики. Область II – зоны Френеля, пятно Пуассона. Область III – дифракция в параллельных лучах.

Изображение показывает угловое расхождение пучка и его уменьшение при увеличении поперечного размера D. Данное суждение относится к волнам любой физической природы. Отсюда следует, что для посыла узкого пучка на Луну предварительно нужно произвести его расширение, то есть применить телескоп. При направлении лазерного пучка в окуляр он проходит все расстояние внутри телескопа с диаметром D.

Дифракционная длина - Справочник студента

Рисунок 3.9.6. Разрешение лазерного пучка с помощью телескопической системы.

Только при таких условиях пучок дойдет до поверхности Луны, а радиус пятна запишется как
R≈λDL, где L обозначается как расстояние до Луны. Принимаем значение D=2,5 м, λ=550 нм, L=4ċ106 м, получим R≈90 м. При направлении пучка с диаметром в 1 см его «засвет» на Луне был бы в виде пятна с радиусом в 250 раз больше.

Разрешающая способность микроскопа

Микроскоп служит для наблюдения близко расположенных объектов, поэтому разрешающая способность зависит от линейного расстояния между близкими точками. Расположение объекта должно быть вблизи переднего фокуса объектива.

Существует специальная жидкость, которой заполняют пространство перед объективом, что наглядно показано на рисунке 3.9.7. Геометрически сопряженный объект, находящийся в этой же плоскости с его увеличенным изображением, рассматривается при помощи окуляра.

Каждая точка размыта по причине дифракции света.

Дифракционная длина - Справочник студента

Рисунок 3.9.7. Иммерсионная жидкость перед объективом микроскопа.

Определение 4

Предел разрешения объектива микроскопа был определен в 1874 г Г. Гельмгольцем. Такая формула записывается:

lmin=0,61λn·sin α.

Знак λ требуется для обозначения длины волны, n – для показателя преломления иммерсионной жидкости, α – для обозначения апертурного угла. Величину n·sin α называют числовой апертурой.

Качественные микроскопы имеют ампертурный угол α, который приближен к значению предела α ≈ π2. По формуле Гельмгольца наличие иммерсии позволяет улучшить предел разрешения. Предположим, что sin α ≈ 1, n ≈ 1,5, тогда lmin≈0,4 λ.

Отсюда следует, что микроскоп не дает полной возможности просмотра каких-либо деталей с размерами намного менее размера длины световой волны. Волновые свойства света влияют на предел качества изображения объекта, который получаем с помощью любой оптической системы.

Источник: https://Zaochnik.com/spravochnik/fizika/volnovaja-optika/difraktsionnyj-predel-razreshenija/

Инфофиз — мой мир..

Тема: Определение длины волны светового излучения с помощью дифракционной решётки

Цель: Познакомиться на опыте с явлением многолучевой интерференции световых волн. Используя решётку с известным расстоянием между штрихами измерить длину волны светового излучения.

Оборудование:

  1. Штатив.
  2. Дифракционная решётка 100 штрихов на мм.
  3. Измерительная лента.
  • Теория
  • Дифракция волн — огибание волнами различных препятствий (неоднородностей).
  • Препятствия нарушают прямолинейность распространения фронта волны.

Дифракция волн свойственна всякому волновому движению; проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней, однако проявляется всегда.

Для увеличения яркости дифракционной картины нужно пропускать свет через несколько параллельных щелей. В этом случае кроме явления дифракции будет происходить ещё и явление интерференции, т.к.

лучи, идущие от всех лучей, оказываются когерентными.

  1. Когерентными называются волны, имеющие одинаковую частоту и постоянную разность фаз.
  2. Большое число параллельных и очень близко расположенных узких щелей, которые пропускают или отражают свет, называют дифракционной решёткой.
  3. Дифракционные решетки с различным числом щелей на 1 мм:

Дифракционная длина - Справочник студента

Параллельный пучок света с длиной волны λ, проходя через дифракционную решётку, вследствие дифракции за решёткой, распространяется по всевозможным направлениям и интерферирует. На экране, установленном на пути интерферирующего света, можно наблюдать интерференционную картину:

Дифракционная длина - Справочник студента

Максимумы света наблюдаются в точках экрана, для которых выполняется условие максимума:

Дифракционная длина - Справочник студента

Условие максимума: на разности хода волн укладывается четное число полуволн (целое число длин волн): Δ=k·λ,  (1)

где  Δ=АС — разность хода волн; λ — длина световой волны; k — номер максимума.

Дифракционная длина - Справочник студента

Центральный максимум (в точке О) называют нулевым; для него Δ=0. Слева и справа от него располагаются максимумы высших порядков. Условие возникновения максимума можно записать иначе:

d·sinφ=k·λ

где k=0; ± 1; ± 2; ± 3…

  • Здесь d — период дифракционной решётки в мм, φ — угол, под которым виден световой максимум k-го порядка в точке N на расстоянии а от нулевого максимума, а λ — длина волны.
  • Так как углы дифракции малы, то для них можно принять: sinφ ≈ tgφ, а tgφ=a/b.
  • Поэтому:  , и искомая длина световой волны равна  (2)
  • В данной работе формулу (2) используют для вычисления длины световой волны.
  • Из условия максимума следует sinφ=(k·λ)/d .
  •    Пусть k=1, тогда sinφкр=λкр/d и sinφф=λф/d.

   Известно, что λкр>λф , следовательно sinφкр>sinφф. Т.к. y= sinφф — функция возрастающая, то φкр>φф

   Поэтому фиолетовый цвет в дифракционном спектре располагается ближе к центру.

Между максимумами расположены минимумы освещенности. Чем больше общее число щелей и чем ближе друг к другу они расположены, тем более широкими промежутками разделены максимумы.

Картина дифракции лазерного излучения красно цвета на решётках с различным числом щелей на 1 мм:

Читайте также:  Соответствие культуры принятой стратегии - справочник студента

Дифракционная длина - Справочник студента

Ход работы

  1. Перенести рисунок в тетрадь.

Дифракционная длина - Справочник студента

  1. Подготовить таблицу для записи результатов измерений:
  1. Порядок спектра,
  2. цвет
  3. k
  • Постоянная решётки,
  • d
  • мм
  1. Расстояние от решётки до экрана,
  2. b
  3. мм
  • Расстояние от нулевого максимума до максимума k-порядка
  • а
  • мм
Длина волны, нм Средняя длина волны нм
  1. Относительная погрешностьизмерения
  2. δ
  3. %
1-ый, красный 1:100=0,001
2-ой, красный 1:100=0,001
1-ый, фиолетовый 1:100=0,001
2-ой, фиолетовый 1:100=0,001
  1. Укрепить в штативе линейку с экраном и закрепить на направляющей линейки дифракционную решётку.
  2. Установить расстояние от решётки до экрана 40 см (b).Результат записать в таблицу.
  3. Смотря через дифракционную решётку, направить прибор на источник света. Пронаблюдать спектр:

Дифракционная длина - Справочник студента

Измерить на экране расстояние а между нулевым максимумом и максимумом 1-го  порядка для красного света.  Результат записать в таблицу.

  1. Измерить на экране расстояние а между нулевым максимумом и максимумом 2-го порядка для красного света. Результат записать в таблицу.
  2. Повторить опыт, измерив на экране расстояние а между нулевым максимумом и максимумом 1-го и 2-го порядка для фиолетового света. Результат записать в таблицу.
  3. По формуле   рассчитать длину волны излучения.
  4. Найти среднее значение длины волны светового излучения для красного λкр ср=( λкр1+λкр2)/2 и фиолетового света   .λф ср=( λф1+λф2)/2 
  1. Зная истинное значение длины волны лазерного излучения , рассчитать относительную погрешность измерений:
  • δ=( λкр ср — λкр табл)/λкр табл *100%       и δ=( λф ср — λф табл)/λф табл *100%
  • Диапазон длин волн, нм
  • Красный 625—740 нм (λкр табл= 680 нм)
  • Фиолетовый 380—440 нм (λф табл = 410 нм)
  1. Записать вывод по результатам выполненной работы.
  2. Ответить письменно на контрольные вопросы.

Контрольные вопросы

  1. Какие волны называются когерентными?
  2. В чём заключается явление дифракции?
  3. Какие свойства света подтверждает дифракция света?
  4. При каких условиях наблюдается дифракция света?
  5. Как образуется дифракционный спектр?
  6. Почему максимумы располагаются как слева, так и справа от нулевого максимума?
  7. В чём разница в дифракционных картинах решёток с 50 и 300 штрихами на одном миллиметре?

Источник: http://infofiz.ru/index.php/mirfiziki/fizst/lkf/484-lr13-1

Петрович Г.И. О порядке главных максимумов от дифракционной решётки в ЦТ

При перпендикулярном (нормальном) падении параллельного пучка монохроматического света на дифракционную решётку на экране в фокальной плоскости собирающей линзы, расположенной параллельно дифракционной решётке, наблюдается неоднородная картина распределения освещённости разных участков экрана (дифракционная картина).

Главные максимумы этой дифракционной картины удовлетворяют следующим условиям:

Дифракционная длина - Справочник студента

где n — порядок главного дифракционного максимума, d — постоянная (период) дифракционной решётки, λ— длина волны монохроматического света, φn— угол между нормалью к дифракционной решётке и направлением на главный дифракционный максимум n-го порядка.

Постоянная (период) дифракционной решётки длиной l

Дифракционная длина - Справочник студента

  • где N — количество щелей (штрихов), приходящихся на участок дифракционной решётки длиной I.
  • Наряду с длиной волнычасто используется частота v волны.
  • Для электромагнитных волн (света) в вакууме

Дифракционная длина - Справочник студента

где с = 3 *108 м/с — скорость распространения света в вакууме. 

Выделим из формулы (1) наиболее трудно математически определяемые формулы для порядка главных дифракционных максимумов:

Дифракционная длина - Справочник студента

где обозначает целую часть числа d*sin(φ/λ).

Недоопределённые аналоги формул (4, а,б) без символа […] в правых частях содержат в себе потенциальную опасность подмены физически обоснованной операции выделения целой части числа операцией округления числа d*sin(φ/λ) до целочисленного значения по формальным математическим правилам.

Подсознательная тенденция (ложный след) подмены операции выделения целой части числа d*sin(φ/λ) операцией округления

этого числа до целочисленного значения по математическим правилам ещё более усиливается, когда речь идёт о тестовых заданиях типа В на определение порядка главных дифракционных максимумов.

В любых тестовых заданиях типа В численные значения искомых физических величин по договорённости округляются до целочисленных значений. Однако в математической литературе нет единых(го) правил(а) округления чисел.

В справочной книге В. А. Гусева, А. Г. Мордковича по математике для учащихся [1] и белорусском учебном пособии Л. А. Латотина, В. Я. Чеботаревского по математике для IV класса [2] приводятся по существу одни и те же два правила округления чисел.

В [1] они сформулированы так: «При округлении десятичной дроби до какого-нибудь разряда все следующие за этим разрядом цифры заменяются нулями, а если стоят после запятой, то их отбрасывают. Если первая следующая за этим разрядом цифра больше или равна пяти, то последнюю оставшуюся цифру увеличивают на 1.

Если же первая следующая за этим разрядом цифра меньше 5, то последнюю оставшуюся цифру не изменяют».

В справочнике М. Я. Выгодского по элементарной математике [3], выдержавшем двадцать семь (!) изданий, написано (с. 74): «Правило 3. Если отбрасывается цифра 5, а за ней нет значащих цифр, то округление производится до ближайшего чётного числа, т.е. последняя сохраняемая цифра остаётся неизменной, если она чётная, и усиливается (увеличивается на 1), если она нечётная».

Ввиду существования различных правил округления чисел следовало бы правила округления десятичных чисел явно сформулировать в «Инструкции для учащихся», прилагаемой к заданиям централизованного тестирования по физике.

Это предложение приобретает дополнительную актуальность, так как в белорусские вузы поступают и проходят обязательное тестирование не только граждане Беларуси и России, но и других стран, и заведомо неизвестно, какими правилами округления чисел они пользовались при обучении в своих странах.

  1. Во всех случаях округление десятичных чисел будем производить по правилам, приведённым в [1], [2].
  2. После вынужденного отступления, возвратимся к обсуждению рассматриваемых физических вопросов.
  3. С учётом нулевого (n = 0) главного максимума и симметричного расположения остальных главных максимумов относительно него общее количество наблюдаемых главных максимумов от дифракционной решётки подсчитывается по формулам:

Дифракционная длина - Справочник студента

Если расстояние от дифракционной решётки до экрана, на котором наблюдается дифракционная картина, обозначить через Н, то координата главного дифракционного максимума n-го порядка при отсчёте от нулевого максимума равна

Дифракционная длина - Справочник студента

Если то (радиан) и

  • Задачи на рассматриваемую тему часто предлагают на тестированиях по физике.
  • Начнём обзор с рассмотрения российских тестов, использовавшихся белорусскими вузами на начальном этапе, когда тестирование в Беларуси было необязательным и проводилось отдельными учебными заведениями на свой страх и риск как альтернатива обычной индивидуальной письменно-устной форме проведения вступительных экзаменов.
  • Тест № 7 [4]
  • А32. Наибольший порядок спектра, который можно наблюдать при дифракции света с длиной волны λ на дифракционной решётке с периодом d=3,5λ равен
  • 1) 4; 2) 7; 3) 2; 4) 8; 5) 3.
  • Решение

При освещении дифракционной решётки монохроматическим светом ни о каких спектрах не может быть и речи. В условии задачи речь должна идти о главном дифракционном максимуме наибольшего порядка при перпендикулярном падении монохроматического света на дифракционную решётку.

По формуле (4, б)

Из недоопределённого условия

  1. на множестве целых чисел, после округления получаем nmах=4.
  2. Только благодаря несовпадению целой части числа d/λ с его округлённым целочисленным значением правильное решение (nmах=3) отличается от неправильного (nmax=4) на тестовом уровне.
  3. Изумительная миниатюра, несмотря на огрехи формулировки, с филигранно выверенным по всем трём версиям округления чисел ложным следом!
  • А18. Если постоянная дифракционной решётки d=2 мкм, то для нормально падающего на решётку белого света 400 нм

Источник: https://alsak.ru/item/346-7.html

Дифракционная решетка — Класс!ная физика

«Физика — 11 класс»

На явлении дифракции основано устройство оптического прибора — дифракционной решетки.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками. Б.

Дифракционная длина - Справочник студента

Хорошую решетку изготовляют с помощью специальной делительной машины, наносящей на стеклянную пластину параллельные штрихи. Число штрихов доходит до нескольких тысяч на 1 мм; общее число штрихов превышает 100 000.

Просты в изготовлении желатиновые отпечатки с такой решетки, зажатые между двумя стеклянными пластинами. Наилучшими качествами обладают так называемые отражательные решетки.

Они представляют собой чередующиеся участки, отражающие свет и рассеивающие его.

Рассеивающие свет штрихи наносятся резцом на отшлифованную металлическую пластину.

Если ширина прозрачных щелей (или отражающих свет полос) равна а, и ширина непрозрачных промежутков (или рассеивающих свет полос) равна 5, то величина d = а + b называется периодом решетки. Обычно период дифракционной решетки порядка 10 мкм.

Рассмотрим элементарную теорию дифракционной решетки. Пусть на решетку падает плоская монохроматическая волна длиной волны λ.

Дифракционная длина - Справочник студента

Вторичные источники, расположенные в щелях, создают световые волны, распространяющиеся по всем направлениям. Найдем условие, при котором идущие от щелей волны усиливают друг друга.

Рассмотрим, например, волны, распространяющиеся в направлении, определяемом углом φ.

Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладывается целое число длин волн, то волны от всех щелей, складываясь, будут усиливать друг друга. Из треугольника АВС можно найти длину катета АС: АС = АВ sin φ — d sin φ.

Максимумы будут наблюдаться под углом φ, в соответствии с условие

Дифракционная длина - Справочник студента

где величина k = 0, 1, 2, … определяет порядок спектра.

Нужно иметь в виду, что при выполнении условия усиливают друг друга не только волны, идущие от нижних краев щелей, но и волны, идущие от всех других точек щелей. Каждой точке в первой щели соответствует точка во второй щели, находящаяся на расстоянии d от первой точки.

Поэтому разность хода испущенных этими точками вторичных волн равна kλ, и эти волны взаимно усиливаются.

За решеткой помещают собирающую линзу и за ней — экран на фокусном расстоянии от линзы. Линза фокусирует лучи, идущие параллельно, в одной точке. В этой точке происходит сложение волн и их взаимное усиление.

  • Углы φ, удовлетворяющие условию, определяют положение так называемых главных максимумов на экране.
  • Интенсивности максимумов в ней меньше интенсивности главных максимумов.

Наряду с картиной, получаемой в результате дифракции света, в случае дифракционной решетки наблюдается дифракционная картина и от отдельных щелей.

Так как положение максимумов (кроме центрального, соответствующего k = 0) зависит от длины волны, то решетка разлагает белый свет в спектр. Чем больше λ, тем дальше от центрального максимума располагается тот или иной максимум, соответствующий данной длине волны.

Каждому значению k соответствует свой порядок спектра.

Между максимумами расположены минимумы освещенности. Чем больше число щелей, тем более резко очерчены максимумы и тем более широкими минимумами они разделены.

Световая энергия, падающая на решетку, перераспределяется ею так, что большая ее часть приходится на максимумы, а в область минимумов попадает незначительная часть энергии.

С помощью дифракционной решетки можно проводить очень точные измерения длины волны. Если период решетки известен, то определение длины волны сводится к измерению угла φ, соответствующего направлению на максимум.

Наши ресницы вместе с промежутками между ними представляют собой грубую дифракционную решетку. Поэтому, если посмотреть, прищурившись, на яркий источник света, то можно обнаружить радужные цвета. Белый свет разлагается в спектр при дифракции вокруг ресниц.

Лазерный диск с бороздками, проходящими близко друг от друга, подобен отражательной дифракционной решетке. Если вы посмотрите на отраженный им свет от электрической лампочки, то обнаружите разложение света в спектр.

Можно наблюдать несколько спектров, соответствующих разным значениям k.

Картина будет очень четкой, если свет от лампочки падает на пластинку под большим углом.

Множество узких щелей на небольшом расстоянии друг от друга образует замечательный оптический прибор — дифракционную решетку. Решетка разлагает свет в спектр и позволяет очень точно измерять длины световых волн.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Поперечность световых волн. Поляризация света» Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Световые волны. Физика, учебник для 11 класса — Класс!ная физика

Оптика — Скорость света — Принцип Гюйгенса. Закон отражения света — Закон преломления света — Полное отражение — Линза — Построение изображения в линзе — Формула тонкой линзы. Увеличение линзы — Примеры решения задач.

Геометрическая оптика — Дисперсия света — Интерференция механических волн — Интерференция света — Некоторые применения интерференции — Дифракция механических волн — Дифракция света — Дифракционная решетка — Поперечность световых волн.

Поляризация света — Поперечность световых волн и электромагнитная теория света — Примеры решения задач. Волновая оптика — Краткие итоги главы

Источник: http://class-fizika.ru/11_103.html

Ссылка на основную публикацию