«Только кухарка прибавляет соли на глаз,
а физики должны все рассчитывать»
П.Л. Капица
В данной теме разговор пойдёт о том, какое же действие оказывает магнитное поле на проводник с током. В конце урока, для закрепления полученных знаний, будет проведена лабораторная работа по наблюдению действия магнитного поля на ток.
Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами. Магнитное поле порождается электрическим током и обнаруживается по действию на электрический ток. Для количественного описания магнитного поля вводится физическая величина, называемая.
Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля, численно равная максимальному вращающему моменту, действующему на контур с единичным магнитным моментом, и направленная вдоль положительной нормали к контуру.
Магнитное поле — это вихревое поле, т.е. линии индукции магнитного поля замкнуты. Замкнутость линий говорит нам о том, что магнитных зарядов в природе не существует, источником магнитного поля являются движущиеся заряды и переменные электрические поля.
Опыты Ампера показали, что два проводника притягиваются или отталкиваются в зависимости от направления тока в них. Это объясняется тем, что сила, которую испытывает каждый из проводников, обусловлена магнитным полем, создаваемым током другого проводника.
Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.
Действительно, расположим проводник с током так, чтобы только один его прямолинейный участок оказался в сильном магнитном поле (например, между полюсами подковообразного магнита), а остальные части цепи находились в областях пространства, где магнитное поле слабое и его действием на эти части цепи можно пренебречь.
Как показывают многочисленные опыты, проводник может двигаться влево или вправо, вверх или вниз, в зависимости от направления тока и от расположения полюсов магнита. Но если проводник расположить вдоль направления магнитного поля, то никакие силы на него действовать не будут.
Закон, определяющий силу, действующую на отдельный небольшой участок проводника с током в магнитном поле, был установлен в 1820 году французским физиком Андре-Мари Ампером, поэтому эту силу называют силой Ампера.
От чего зависит сила Ампера?
Возьмем свободно подвешенный горизонтальный проводник и поместим его в поле постоянного подковообразного магнита. Поле такого магнита в основном сосредоточено между его полюсами, поэтому магнитная сила действует только на часть проводника, расположенную непосредственно между полюсами.
Сила измеряется с помощью специальных весов, связанных с проводником двумя стержнями. Она будет направлена горизонтально, перпендикулярно проводнику и линиям магнитной индукции.
Если увеличить силу тока в 2 раза, то можно заметить, что и действующая на проводник сила также увеличится в 2 раза.
Если же добавить еще один такой же магнит, то в 2 раза увеличится размер области существующего магнитного поля, и тем самым в 2 раза увеличится длина той части проводника, на которую это поле будет действовать. Сила при этом также увеличится в 2 раза.
Как и любая другая сила, сила Ампера будет зависеть от угла образованного вектором магнитной индукции с проводником.
Таким образом, максимальная сила, действующая на отрезок проводника с током, прямо пропорциональна произведению силы тока на длину участка проводника:
Этот опытный факт можно использовать для определения модуля вектора магнитной индукции.
Действительно, поскольку сила прямо пропорциональна произведению силы тока и длины участка проводника, то их отношение не будет зависеть ни от силы тока в проводнике, ни от длины участка проводника, на которое действует магнитное поле.
Именно поэтому это отношение можно принять за характеристику магнитного поля в том месте, где расположен участок проводника, на который это магнитное поле действует. Именно, к такому выводу пришли, независимо друг от друга, Андре-Мари Ампер и Доминик Франсуа Жан Араго в начале 19 века.
Таким образом, модуль вектора магнитной индукции определяется отношением максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока на длину этого отрезка.
Вектор магнитной индукции полностью характеризует магнитное поле. В каждой точке магнитного поля можно определить его направление и модуль.
Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.
Сила Ампера равна произведению модуля силы тока, модуля вектора магнитной индукции, длины отрезка проводника и синуса угла между направлениями вектора магнитной индукции и тока.
Это выражение еще называют законом Ампера. Им можно пользоваться только тогда, когда длина проводника такова, что индукция во всех точках проводника может считаться одинаковой, но если магнитное поле однородно, то длина проводника может быть любой, но при этом проводник целиком должен находиться в магнитном поле.
Направление силы Ампера можно определить, пользуясь правилом левой руки: руку располагают так, чтобы нормальная составляющая магнитной индукции входила в ладонь, четыре вытянутых пальца были направлены по току; тогда отогнутый на 900 большой палец укажет направление действующей на проводник силы Ампера.
Силы, действующие на проводник с током в магнитном поле, широко используются в технике. Электродвигатели и генераторы, телефоны и микрофоны — во всех этих и множестве других приборах используется взаимодействие токов, токов и магнитов и т.д.
Разберемся с принципом работы громкоговорителя, который является одним из самых знаменитых изобретений ХХ века. Именно его появление (наряду с микрофоном) обеспечило возможность развития систем звукозаписи и звуковоспроизведения.
В настоящее время громкоговорители относятся к самым массовым видам звуковой аппаратуры (по приблизительным подсчетам их промышленный выпуск достигает 500 млн. штук в год).
От качества звучания громкоговорителей в значительной степени зависит качество звука в системах звукоусиления, радиовещания, телевидения, звукозаписи и домашнего воспроизведения.
Именно поэтому исследованием физических процессов преобразования звука в громкоговорителях, созданием их математических моделей и алгоритмов, программных продуктов для их расчета и проектирования занимаются десятки университетов и научных центров, а производством — сотни крупнейших фирм.
Громкоговоритель — это прибор, который служит для возбуждения звуковых волн под действием переменного электрического тока, меняющегося со звуковой частотой. Иными словами, громкоговоритель применяется для преобразования электрических колебаний в звуковые.
История устройства, преобразующего энергию электрического сигнала в энергию звукового поля, началась в конце 19 века, задолго до появления усилителей мощности. В 1849 году на Кубе изобретатель итальянского происхождения Антонио Меуччи сконструировал, как он говорил, «Говорящий телеграф». Однако данное устройство он не смог запатентовать из-за достаточной бедности.
26 октября 1861 года преподаватель физики Фридрихсдорфского института Иоганн Филипп Рейс продемонстрировал самодельный аппарат, который назвал «музыкальным телефоном».
Но его изобретение было недостаточно чувствительным: хорошо передавались лишь громкие звуки музыкальных инструментов, а вот человеческую речь было слышно плохо.
Изобретением Рейса заинтересовались и знаменитый Томас Эдисон, и тогда еще малоизвестный Александр Белл.
В 1874 году немецкий инженер Эрнст Вернер фон Сименс, основатель компании Siemens, описал магнитоэлектрический аппарат, в котором круглая катушка с намотанной проволокой располагается в радиальном магнитном поле со специальной поддержкой для обеспечения возможности вертикального смещения. Он указал тогда, что этот двигательный механизм может использоваться для получения звука, но не продемонстрировал это на практике.
- В 1876 году американский ученый Александр Белл запатентовал телефон и продемонстрировал его звучание с использованием преобразователя очень похожего типа.
Когда, в 1876 г. американские газеты сообщили об изобретении телефона Александром Беллом, Меуччи заподозрил, что у него просто украли идею, и подал в суд на «Вестерн Юнион». После многолетней тяжбы он все-таки выиграл процесс.
Но к тому времени патент на изобретение уже истек, и итальянец смог получить разве что моральное удовлетворение.
Только 11 июня 2002 года Конгресс США вынес решение о том, что именно Меуччи, а не Белл, является изобретателем телефона.
В 1915-1918 гг. эти разработки продолжили инженеры фирмы Белла, и вскоре на улицах городов появились первые рупорные громкоговорители.
Но диапазон частот у этих устройств был очень узким. Выход нашли американцы Честер Рейс и Эдвард Келлог из компании «Дженерал электрик». В 1924 г.
они сконструировали электродинамический излучатель, в котором диафрагма могла работать в диапазоне выше своей резонансной частоты. Уже через два года это устройство появилось в промышленных громкоговорителях Radiola Model 104, а также в радиоприемнике Radiola 28.
В 1927 г. в конструкции головки громкоговорителя появился постоянный магнит, что способствовало улучшению качества звука.
Интересно отметить, что почти одновременно работы по созданию электродинамических громкоговорителей велись и в России. В 1923 году в Петрограде была создана Центральная радиолаборатория, позднее переименованная в Институт радиовещательного приема и акустики. С первых дней создания в ИРПА проводились разработки громкоговорителей.
В 1926 году был создан электромагнитный громкоговоритель «Рекорд» и электромагнитный рупорный уличный громкоговоритель ТМ, которые начали выпускаться на заводе им. Кулакова. Уже в 1930-32 годах были созданы первые мощные громкоговорители для звукоусиления на Красной площади в Москве (мощностью 100 Ватт).
С тех пор акустические системы претерпели массу изменений, но принцип их работы до сих пор остается все тем же.
Устройство громкоговорителя. У громкоговорителя есть подвижная и неподвижная части, которые и образуют его функциональную систему.
Подвижную часть, закрытую пылезащитным колпачком, называют диффузором. Он создает механические колебания — вибрацию воздуха, который мы воспринимаем как звук, и чем больше площадь соприкосновения подвижной части с воздухом, тем сильнее будет излучаемый звуковой сигнал.
За диффузором располагается центрирующая шайба, в которой находится электромагнитная катушка. Она влияет на мощность звука и его качество. Каркас такой катушки изготавливают из плотной бумаги или медной, или алюминиевой фольги и прикрепляют к диффузору с тыльной стороны. Выводы катушки подключаются к выходному каскаду усилителя звуковой частоты.
Эта катушка (еще ее называют звуковой) имеет свободный ход на металлическом стержне, расположенном в магнитном поле мощного постоянного магнита, кольцевой формы, который крепится к корзине.
При прохождении через обмотку звуковой катушки усиленного звукового сигнала, создается переменное электромагнитное поле, которое суммируется воедино витками намотанного на каркас провода и взаимодействует с магнитным полем постоянного магнита.
В зависимости от силы поступаемого на обмотку электрического сигнала, прочно прикрепленная к диффузору катушка приводит диффузор в колебательные движения, который возбуждает окружающий его воздух, образовывая направленную звуковую волну.
Высококачественные громкоговорители воспроизводят звуковые колебания в диапазоне от 20 до 20000 Герц. Но такие устройства довольно сложны. Чаще применяют системы из нескольких громкоговорителей с разделёнными диапазонами воспроизведения звука.
Это улучшает слышимое качество звука и перераспределяет электрическую и механическую нагрузку между динамиками, увеличивая общую громкость воспроизведения. Для домашних условий вполне достаточной может быть мощность около 1–5 электрических ватт.
Для вечеринки — около 20–100 ватт. Небольшой актовый зал или дискотека – 300–500 ватт. И далее по возрастающей. Общим недостатком всех громкоговорителей является малый КПД — 1-3 %.
Но и этих процентов на практике хватает для слушания музыки, речи и других звуков окружающего нас мира.
Лабораторная работа №1. Наблюдение действия магнитного поля на ток.
- Цель работы: наблюдение действия магнитного поля на проводник с током.
- Оборудование: штатив с муфтой и лапкой, реостат, ключ, источник постоянного тока, соединительные провода, дугообразный магнит и, конечно же, проволочный моток.
- Ход работы:
1. Необходимо подвесить проволочный моток к штативу, предварительно присоединив его к источнику тока последовательно с реостатом и ключом. Предварительно ключ должен быть разомкнут, а движок реостата должен быть установлен на максимальное сопротивление. Начертите схему.
2 .Замкните цепь и расположите магнитную стрелку под мотком, определите полярность магнитного поля мотка.
3. Поднесите к висящему мотку магнит и, замыкая ключ, пронаблюдайте движение мотка. Сделайте рисунок.
- 4. Ответьте на вопросы:
- Каково направление тока в мотке?
- Каково направление магнитного поля мотка?
- И каково направление магнитного поля магнита?
5. Поменяйте направление тока в мотке и опять пронаблюдайте за его движением. Сделайте соответствующий рисунок, и ответьте на вопросы из предыдущего пункта.
Сделайте самостоятельно выводы по данной теме.
Источник: https://videouroki.net/video/3-dieistviie-maghnitnogho-polia-na-provodnik-s-tokom-l-r-1.html
Магнитное поле. Действие магнитного поля на электрический заряд и опыты, иллюстрирующие это действие. Магнитная индукция
- Если неподвижные электрические заряды создают вокруг себя электрическое поле, то движущиеся заряды создают, кроме того, магнитное поле.
- Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.
- Свойства магнитного поля:
- 1. магнитное поле действует только на подвижные заряды с определенной силой;
2. Магнитное поле порождается электрическим током (движущимися зарядами);
3. Магнитное поле обнаруживается по действию на электрический ток (на движущиеся заряды)
Магнитное поле существует реально, независимо от нас, от наших знаний о нем.
Нам известно, как ведет себя магнитная стрелка в магнитном поле, поворачиваясь в нем определенным образом. Магнитное поле ориентирует магнитную стрелку вдоль направления вектора магнитной индукции. За направление вектора магнитной индукции принимают направление, которое показывает северный полюс N магнитной стрелки, свободно устанавливающейся в магнитном поле.
Направление вектора магнитной индукции устанавливают с помощью правила буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции.
Определить направление вектора индукции магнитного поля Земли, к примеру, можно компасом, когда ориентируемся на местности. Магнитное поле не имеет источников.
Магнитное поле графически изображается в виде линий магнитной индукции. Линии магнитной индукции называются линии, касательные к которым в любой их точке совпадают с вектором В, в данной точке поля.
Вокруг проводника с током существует магнитное поле, и оно порождается переменным электрическим полем движущихся заряженных частиц в проводнике. Магнитное поле является силовым полем. Силовой характеристикой магнитного поля называют магнитную индукцию (В).
Рассчитать магнитную индукцию можно по формуле: где F- сила, действующая со стороны магнитного поля на проводник с током ( H ); I — сила тока в проводнике ( A ); l — длина проводника ( м ). Единица измерения индукции магнитного поля в СИ: [ B ] = 1Тл ( тесла).
Магнитное поле является вихревым полем. Линии магнитной индукции прямого провода с током представляют собой концентрические окружности, расположенные в плоскости, перпендикулярной проводнику.
Магнитное поле соленоида.
Источник: http://kaplio.ru/magnitnoe-pole-dejstvie-magnitnogo-polya-na-elektricheskij-zaryad-i-opyty-illyustriruyushhie-eto-dejstvie-magnitnaya-induktsiya/
Действие магнитного поля на проводник с током — Класс!ная физика
Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в нем. Если проводник, по которому протекает электрический ток подвесить в магнитном поле, например, между полюсами магнита, то магнитное поле будет действовать на проводник с некоторой силой и отклонять его.
Направление движения проводника зависит от направления тока в проводнике и от расположения полюсов магнита.
Если поместить проволочную рамку , по которой протекает электрический ток, в магнитное поле, то в результате действия силы магнитного поля, рамка будет поворачиваться.
ЭЛЕКТРОДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА
- Устройство электродвигателя
- Преимущества электродвигателей:
- — малые размеры по сравнению с тепловыми двигателями; — экологически чистые; — можно сделать любых размеров;
- — высокий КПД (98%).
- ЧИТАЕМ
1) якорь электродвигателя — железный цилиндр, закрепленный на валу двигателя; вдоль цилиндра сделаны прорези (пазы ), в которые укладывается обмотка, состоящая из большого числа витков проволоки. 2) индуктор электродвигателя — электромагнит; образующий магнитное поле, в котором вращается якорь двигателя. Принцип работы электродвигателя основан на вращении катушки с током в магнитном поле: магнитное поле создается электромагнитом; катушка — обмотка якоря, по которой протекает электрический ток; со стороны магнитного поля на катушку, как на рамку с током действует сила, стремящаяся повернуть ее; вместе с якорем вращается и вал двигателя.
«Поющие» магниты. Магнитная летательная машина. Электромагнитный транспорт. Наподобие «магометова гроба». Тайны магнита
ОДНАКО
Магнит для ловли ядер противника…
В 1887 году майор американского флота Кинг приказал сделать гигантский электромагнит из двух крупнейших береговых орудий калибром 36 см, поставленных рядом в форте Виллетс-Пойнт. Магнитная цепь замыкалась с помощью притороченных к пушкам железнодорожных рельсов.
Пушки, каждая из которых была по 5 м длиной и весила 25 т, были обмотаны многожильным торпедным кабелем длиной 14 миль. Для питания использовался электрогенератор, обычно применявшийся для ламп прожекторов. При включении тока к жерлам пушек притягивались стальные плиты, которые могли быть оторваны лишь при усилии 10 т.
У жерла пушки могли висеть как гроздь, одно под другим четыре ядра, каждое массой 120 кг. Те, у кого в карманах или руках были небольшие стальные предметы, начинали чувствовать приближение к пушке за 2 м. Действие же пушек на магнитную стрелку, как писали авторы, распространялось более чем на 10 км. Что же касалось неприятельских ядер…
их пушка не притягивала.
ДРЕВНОСТИ
Древний китайский рисунок, датируемый 220 г. до н. э., изображает изящный компас, выполненный в виде небольшой ложечки, свободно вращающейся посередине отлитой из бронзы квадратной пластины.
Источник: http://class-fizika.ru/8_m6.html
Действие магнитного поля на ток
Магнитное поле не зависимо от источников, которыми оно порождается, токами, постоянными магнитами, проявляет себя, прежде всего, в механическом воздействии на движущиеся заряды. К движущимся зарядам относится и электрические токи.
Рассмотрим силу, которая действует на проводник с током. Ее действие легко обнаружить, если провести простой опыт. Повесить проводник, по которому может течь ток между полюсами постоянного магнита. При включении тока проводник отклонится под действием силы, которая имеет магнитную природу (рис.1).
Рис. 1
Ампер первым установил, что проводники, по которым течет электрический ток, взаимодействуют механически (притягиваются или отталкиваются).
Он отметил, что природа силы, которая действует на проводник с током в магнитном поле, не является электростатической, а носит особенный характер. Позднее такая сила стала называться силой Ампера.
На основе использования силы Ампера действует ряд электроизмерительных приборов магнитоэлектрической системы.
Ничего непонятно?
Попробуй обратиться за помощью к преподавателям
Математические выражения для силы Ампера
Итак, Ампер экспериментально установил, что сила, которая действует в магнитном поле на линейный элемент тока, имеет вид:
Формула (1) называется законом Ампера. Он определяет силу, действующую на элемент тока $overrightarrow{dl}$ в магнитном поле. Модуль силы $dF$ находится как:
Направлена сила Ампера перпендикулярно плоскости, в которой лежат векторы $overrightarrow{dl }и overrightarrow{B}$. Конкретное направление силы Ампера можно найти с помощью правила левой руки. Левую руку надо расположить так, чтобы линии поля входили в ладонь, четыре пальца были направлены по току, тогда отогнутый на 90 градусов большой палец укажет направление силы Ампера.
- Сила Ампера, действующая на провод с током конечной длины может быть найдена как:
- где интегрирование проводится по всей длине проводника.
- Сила взаимодействия двух прямых параллельных проводников бесконечной длины равна:
- где $I_1,I_2$ — токи, текущие в проводниках, $d$ — расстояние между проводниками, $l$ — длины проводников ($lgg d$), ${mu }_0=4pi cdot {10}^{-7}frac{Гн}{м} (Генри на метр)$ магнитная постоянная.
Опытное подтверждение связи между электрическими и магнитными полями
Магнитные поля действуют на токи, токи в свою очередь действуют на магнитные поля. Примером может быть опыт Эрстеда. Эрстед помещал магнитную стрелку под прямолинейным проводником с током, параллельно проводу. Стрелка могла вращаться вокруг своей вертикальной оси.
Если по проводнику шел ток, то стрелка устанавливалась перпендикулярно проводу. Направление тока изменяли, стрелка разворачивалась на 1800. Такой же эффект происходил, когда провод перемещали под стрелку.
На этом опыте впервые была установлена связь между электрическими и магнитными явлениями.
Пример 1
Задание: По двум параллельным, прямолинейным проводникам, имеющим длину l=1м каждый, текут одинаковые токи. Сила взаимодействия этих токов равна $F={10}^{-3}H$. Найдите силу тока, которая течет по проводникам, если расстояние между ними равно d=1см.
Решение:
Прямые параллельные проводники, по которым текут постоянные токи, взаимодействуют друг с другом с силой Ампера, модуль которой запишется в виде:
[F=frac{{mu }_0}{2pi }frac{I_1I_2}{d}l=frac{{mu }_0}{2pi }frac{I^2}{d}lleft(1.1
ight),]
где токи $I_1=I_2=I.$ Выразим из (1.1) искомую силу тока, получим:
[I=sqrt{frac{2Fpi d}{l{mu }_0}}.]
$d=1см={10}^{-2}м$. ${mu }_0$=$4pi cdot {10}^{-7}frac{Гн}{м}.$ Подставим численные значения величин, проведем вычисления.
[I=sqrt{frac{2cdot {10}^{-3}pi cdot {10}^{-2}}{1cdot 4pi cdot {10}^{-7}}}approx 7 left(А
ight).]
Ответ: $I=$7А.
Пример 2
Задание: Прямой провод находится в однородном магнитном поле индукция которого, равна 0,01 Тл. Каков будет угол между направлением вектора индукции и направлением тока, если сила, с которой поле действует на проводник, равна ${10}^{-2}$Н. Длина проводника 0,1 м; сила тока 20 А.
- Рис. 2
- $overrightarrow{F}$ направлена перпендикулярно рисунку, от нас.
- Решение:
- Так как поле по условиям задачи однородное, ток постоянный, за основу решения задачи примем закон Ампера в виде:
- Тогда модуль силы Ампера будет равен:
- где $alpha $ — искомый угол между направлением вектора индукции и направлением тока. Выразим $sinalpha , $получим:
- Проведем расчет, все единицы в СИ:
- Ответ: Угол между направлением вектора индукции и направлением тока равен $frac{pi }{6}=30{}^circ .$
[overrightarrow{F}=int{Ileft[overrightarrow{dl}overrightarrow{B}
ight]=Ileft[overrightarrow{l}overrightarrow{B}
ight]left(2.1
ight).}] [F=IBlcdot sinalpha left(2.2
ight),] [sinalpha =frac{F}{IBl}.] [sinalpha =frac{{10}^{-2}}{20cdot {10}^{-2}cdot 0,1}=0,5.] [sinalpha =0,5 o alpha =frac{pi }{6}.]
Источник: https://spravochnick.ru/fizika/postoyannoe_magnitnoe_pole/deystvie_magnitnogo_polya_na_tok/
Действие магнитного поля на ток. Правило левой руки. — Основы электроники
Поместим между полюсами магнита проводник, по которому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.
Объяснить это можно следующим образом. Вокруг проводника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направлены так же, как и силовые линии магнита, а по другую сторону проводника — в противоположную сторону.
Вследствие этого с одной стороны проводника (на рисунке 1 сверху) магнитное поле оказывается сгущенным, а с другой его стороны (на рисунке 1 снизу) — разреженным. Поэтому проводник испытывает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.
Рисунок 1. Действие магнитного поля на ток.
Правило левой руки
Для быстрого определения направления движения проводника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).
Рисунок 2. Правило левой руки.
Правило левой руки состоит в следующем: если поместить левую руку между полюсами магнита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца руки совпадали с направлением тока в проводнике, то большой палец покажет направление движения проводника.
Итак, на проводник, по которому протекает электрический ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы.
Оказывается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая находится в магнитном поле (рисунок 3 слева).
Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.
Рисунок 3. Сила взаимодействия магнитного поля и тока.
Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изображено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную магнитным силовым линиям. Отсюда следует, что если проводник параллелен магнитным силовым линиям, то сила, действующая на него, равна нулю. Если же проводник перпендикулярен направлению магнитных силовых линий, то сила, действующая на него, достигает наибольшей величины.
Сила, действующая на проводник с током, зависит еще и от магнитной индукции. Чем гуще расположены магнитные силовые линии, тем больше сила, действующая на проводник с током.
Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:
Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную магнитному потоку.
Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Действие магнитного поля на ток можно наблюдать даже при отсутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.
Действие магнитного поля на ток широко используется в науке и технике.
На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электродинамических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп — магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Источник: http://www.sxemotehnika.ru/deystvie-magnitnogo-polya-na-tok-pravilo-levoy-ruki.html
Действие магнитного поля на ток
В § 10-а мы рассмотрели опыт, где магнитное поле проводника с током действовало на магнит – стрелку компаса. Возникает вопрос: а будет ли существовать обратное явление – будет ли магнит воздействовать на проводник с током? Проделаем опыт.
![]() |
Посмотрите на рисунок. В начале опыта провод свисает свободно (рис. «а»). Если же концы провода присоединить к источнику тока, соблюдая расположение «+» и «–», то провод втягивается внутрь магнита (рис. «б»). Поменяв местами подключение «+» и «–», мы обнаружим, что провод выталкивается из промежутка между полюсами магнита (см. рис. ниже).
Вместо дугообразного магнита в этом опыте можно взять два полосовых магнита или два электромагнита. Важно лишь, чтобы проводник с током находился в промежутке между их полюсами, где магнитное поле является наиболее сильным. Иначе говоря, магнитное поле всегда действует силой на проводник с током. Для определения направления силы есть правило.
![]() |
Если левую руку расположить в магнитном поле так, чтобы силовые линии входили в ладонь, а четыре пальца были направлены по току, то отогнутый большой палец укажет направление силы, действующей на проводник – гласит правило левой руки. Поясним использование этого правила и проиллюстрируем его рисунком.
Силовые линии магнитного поля между полюсами магнита будут направлены от северного полюса к южному (см. § 10-а). Именно такое направление укажет магнитная стрелка, помещённая в пространство между полюсами.
Значит, чтобы линии входили в ладонь, необходимо отвернуть её от себя, причём четырьмя пальцами вверх – по направлению тока.
Тогда отогнутый большой палец укажет, что проводник будет смещаться вправо, что мы и наблюдаем в этом опыте.
Немного усложним опыт. Вместо проводника в виде гибкого провода возьмём проволоку, согнутую в виде жёсткой рамки. Концы проволоки упрём в металлические «чашечки», подключенные к источнику тока так же, как и в случае с гибким проводом: «+» сверху (см. рис. «б»). Расположение магнита оставим прежним: северный полюс на дальнем плане справа.
Если сначала рамка расположена так, как на рисунке «в», то после включения тока (рис. «г») рамка начнёт поворачиваться, пока не займёт положение, показанное на рисунке «д».
![]() |
Но если в момент подхода рамки к положению «д» ток выключить, то, продолжая двигаться, рамка самостоятельно довернётся в положение «в».
Теперь, если снова включить ток, рамка опять, пройдя через положение «г», повернётся в положение «д».
И если поступление тока регулировать так, чтобы он включался в момент «в» и выключался в момент «д», рамка будет вращаться непрерывно. Мы получим модель электрического двигателя.
Выясним теперь, почему рамка вообще поворачивается. На рисунке «г» показано, что в левой части рамки ток идёт вниз (и эта часть перемещается «в глубь» магнита), а в правой части рамки ток идёт вверх (и эта часть перемещается наружу).
В опыте с гибким проводом было так же: если ток шёл вниз, то провод втягивалтся внутрь магнита, как и двойная сторона рамки.
Если же полярность подключения провода меняли, и ток шёл вверх, то провод выталкивалтся наружу, как и одинарная сторона рамки.
Правило левой руки тоже показывает, что на противоположные стороны рамки с током, находящейся в магнитном поле, действуют противоположно направленные силы, вращающие рамку.
Источник: https://questions-physics.ru/uchebniki/8_klass/deystvie_magnitnogo_polya_na_tok.html
10-г. Действие магнитного поля на ток
§ 10-г. Действие магнитного поля на ток
В § 10-а мы рассмотрели опыт, где магнитное поле проводника с током действовало на магнит – стрелку компаса. Возникает вопрос: а будет ли существовать обратное явление – будет ли магнит воздействовать на проводник с током? Проделаем опыт.
Посмотрите на рисунок. В начале опыта провод свисает свободно (рис. «а»). Если же концы провода присоединить к источнику тока, соблюдая расположение «+» и «–», то провод втягивается внутрь магнита (рис. «б»). Поменяв местами подключение «+» и «–», мы обнаружим, что провод выталкивается из промежутка между полюсами магнита (см. рис. ниже).
Вместо дугообразного магнита в этом опыте можно взять два полосовых магнита или два электромагнита. Важно лишь, чтобы проводник с током находился в промежутке между их полюсами, где магнитное поле является наиболее сильным. Иначе говоря, магнитное поле всегда действует силой на проводник с током. Для определения направления силы есть правило.
Если левую руку расположить в магнитном поле так, чтобы силовые линии входили в ладонь, а четыре пальца были направлены по току, то отогнутый большой палец укажет направление силы, действующей на проводник – гласит правило левой руки. Поясним использование этого правила и проиллюстрируем его рисунком.
Силовые линии магнитного поля между полюсами магнита будут направлены от северного полюса к южному (см. § 10-а). Именно такое направление укажет магнитная стрелка, помещённая в пространство между полюсами.
Значит, чтобы линии входили в ладонь, необходимо отвернуть её от себя, причём четырьмя пальцами вверх – по направлению тока.
Тогда отогнутый большой палец укажет, что проводник будет смещаться вправо, что мы и наблюдаем в этом опыте.
Немного усложним опыт. Вместо проводника в виде гибкого провода возьмём проволоку, согнутую в виде жёсткой рамки. Концы проволоки упрём в металлические «чашечки», подключенные к источнику тока так же, как и в случае с гибким проводом: «+» сверху (см. рис. «б»). Расположение магнита оставим прежним: северный полюс на дальнем плане справа.
Если сначала рамка расположена так, как на рисунке «в», то после включения тока (рис. «г») рамка начнёт поворачиваться, пока не займёт положение, показанное на рисунке «д».
Но если в момент подхода рамки к положению «д» ток выключить, то, продолжая двигаться, рамка самостоятельно довернётся в положение «в».
Теперь, если снова включить ток, рамка опять, пройдя через положение «г», повернётся в положение «д».
И если поступление тока регулировать так, чтобы он включался в момент «в» и выключался в момент «д», рамка будет вращаться непрерывно. Мы получим модель электрического двигателя.
Выясним теперь, почему рамка вообще поворачивается. На рисунке «г» показано, что в левой части рамки ток идёт вниз (и эта часть перемещается «в глубь» магнита), а в правой части рамки ток идёт вверх (и эта часть перемещается наружу).
В опыте с гибким проводом было так же: если ток шёл вниз, то провод втягивалтся внутрь магнита, как и двойная сторона рамки.
Если же полярность подключения провода меняли, и ток шёл вверх, то провод выталкивалтся наружу, как и одинарная сторона рамки.
Правило левой руки тоже показывает, что на противоположные стороны рамки с током, находящейся в магнитном поле, действуют противоположно направленные силы, вращающие рамку.
Электромагнитные явленияФормулы Физика Теория 8 класс
Не можешь написать работу сам?
Доверь её нашим специалистам
от 100 р.стоимость заказа
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
Источник: https://calcsbox.com/post/10-g-dejstvie-magnitnogo-pola-na-tok.html
Действие магнитного поля на электрический ток
1)
2)Действие магнитного поля на электрический ток.
С современной точки зрения в природе существует совокупность двух полей — электрического и магнитного — это электромагнитное поле, оно представляет собой особый вид материи, т. е. существует объективно, независимо от нашего сознания.
Магнитное поле всегда порождается переменным электрическим, и наоборот, переменное магнитное поле всегда порождает переменное электрическое поле. Электрическое поле, вообще говоря, можно рассматривать отдельно от магнитного, так как носителями его являются частицы — электроны и протоны.
Магнитное поле без электрического не существует, так как носителей магнитного поля нет. Вокруг проводника с током существует магнитное поле, и оно порождается переменным электрическим полем движущихся заряженных частиц в проводнике. Магнитное поле является силовым полем. Силовой характеристикой магнитного поля называют магнитную индукцию (В).
Магнитная индукция — это векторная физическая величина, равная максимальной силе, действующей со стороны магнитного поля на единичный элемент тока. В = F/IL Единичный элемент тока — это проводник длиной 1 м и силой тока в нем 1 А. Единицей измерения магнитной индукции является тесла. 1 Тл = 1 Н/А • м.
Магнитная индукция всегда порождается в плоскости под углом 90° к электрическому полю. Вокруг проводника с током магнитное поле также существует в перпендикулярной проводнику плоскости. Магнитное поле является вихревым полем.
Для графического изображения магнитных полей вводятся силовые линии, или линии индукции, — это такие линии, в каждой точке которых вектор магнитной индукции направлен по касательной. Направление силовых линий находится по правилу буравчика. Если буравчик ввинчивать по направлению тока, то направление вращения рукоятки совпадет с направлением силовых линий.
Линии магнитной индукции прямого провода с током представляют собой концентрические окружности, расположенные в плоскости, перпендикулярной проводнику (рис. 29). Как установил Ампер, на проводник с током, помещенный в магнитное поле, действует сила.
Сила, действующая со стороны магнитного поля на проводник с током, прямо пропорциональна силе тока, длине проводника в магнитном поле и перпендикулярной составляющей вектора магнитной индукции. Это и есть формулировка закона Ампера, который записывается так: Fa = ILВ sin a. Направление силы Ампера определяют по правилу левой руки. Если левую руку расположить так, чтобы четыре пальца показывали направление тока, перпендикулярная составляющая вектора магнитной индукции (В = В sin а) входила в ладонь, то отогнутый на 90° большой палец покажет направление силы Ампера (рис. 30).
3)Свойства электроизоляционных материалов
1.Влажностные свойства диэлектриков.
Электроизоляционные материалы в большей или меньшей степени гигроскопичны, т.е. обладают способностью впитывать в себя влагу из окружающей среды, и влагопроницаемы, т.е. способны пропускать сквозь себя пары воды.
Гигроскопичность диэлектриков зависит от их структуры и состава. Неполярные органические диэлектрики, например парафин, полиэтилен, полипропилен, обладают очень малой гигроскопичностью, почти не поглощают влаги из воздуха и даже при длительном пребывании во влажной среде сохраняют хорошие диэлектрические свойства.
- Полярные диэлектрики обладают обычно большей гигроскопичностью.
- Наличие в диэлектриках водорастворимых составных частей и солей повышает их гигроскопичность.
- Материалы, состоящие из волокон, не обладающих объемной гигроскопичностью, как правило, абсорбируют влагу из воздуха за счет наличия пор и смачиваемости поверхности волокон водой, что вследствие сильно развитой поверхности волокон может послужить причиной значительной общей гигроскопичности.
Кроме гигроскопичности, большое практическое значение имеет влагопроницаемость электроизоляционных материалов. Эта характеристика чрезвычайно важна для оценки качества материалов, применяемых для защитных покровов. Для различных материалов влагопроницаемость изменяется в весьма широких пределах.
- 2)Тепловые свойства диэлектриков
- К важнейшим свойствам диэлектриков относятся нагревостойкость, холодостойкость, теплопроводность и тепловое расширение.
- Нагревостойкость — способность электроизоляционных материалов и изделий без вреда для них как кратковременно, так и длительно выдерживать воздействие высокой температуры.
Холодостойкость — способность изоляции работать без ухудшения эксплуатационной надежности при низких температурах, например от -60 до -70° С.
При низких температурах, как правило, электрические свойства изоляционных материалов улучшаются, однако многие материалы, гибкие и эластичные в нормальных условиях, при низких температурах становятся хрупкими и жесткими, что создает затруднения для работы изоляции.
Теплопроводность материалов характеризуют теплопроводностью gt. Значения gt электроизоляционных материалов за исключением окиси бериллия меньше, чем большинства металлов. Наименьшими значениям gt, обладают пористые электроизоляционные материалы с воздушными включениями. Как правило кристаллические диэлектрики имеют более высокие значения gt, чем аморфные.
- Тепловое расширение диэлектриков — материалы, обладающие малыми значениями ТКЛР (температурный коэффициент линейного расширения), имеют, как правило, наиболее высокую нагревостойкость и наоборот.
- 3. Химические свойства диэлектриков
- Знание химических свойств диэлектриков важно для оценки надежности их в эксплуатации и для разработки технологии.
Неполярные или слабополярные углеводороды (парафин, каучук) легко растворяются в жидких углеводородах, например, в бензине; полярные смолы, содержащие, гидроксильные группировки (фенолформальдегидные и другие смолы), растворяются в спирте и иных полярных растворителях. Растворимость уменьшается с повышением степени полимеризации, высокомолекулярные вещества с линейной структурой молекул растворяются сравнительно легко, а с пространственной структурой — весьма трудно. При повышении температуры растворимость обычно увеличивается.
4)Измерительные трансформаторы тока и напряжения. Схемы соединения.
Трансформа́тор то́ка — трансформатор, предназначенный для преобразования тока до значения,удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке.
Трансформаторы тока широко используются для измерения электрического тока и в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, часто составляющим сотни киловольт.
К трансформаторам тока применяются высокие требования по точности. Как правило, трансформатор тока выполняют с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков).
Вторичные обмотки трансформатора тока обязательно замыкаются(закорачиваются) через нагрузку или напрямую и для безопасности заземляются в одной точке.
На вторичной обмотке возникает высокое напряжение, достаточное для пробоя изоляции трансформатора, что приводит к выходу трансформатора из строя, а также создает угрозу жизни обслуживающего персонала.
Кроме того, из-за возрастающих потерь в сердечнике магнитопровод трансформатора начинает перегреваться, что так же может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою. По этим причинам во время эксплуатации трансформатора тока вторичную его обмотку нельзя держать разомкнутой.
В трехфазных сетях с напряжением 6-10 кВ устанавливаются трансформаторы как во всех трех фазах, так и только в двух (A и C). В сетях с напряжением 35 кВ и выше трансформаторы тока в обязательном порядке устанавливаются во всех трех фазах.
В случае установки в три фазы вторичные обмотки трансформаторов тока соединяются в «звезду» (рис.1), в случае двух фаз — «неполную звезду» (рис.2). Для дифференциальных защит трансформаторов с электромеханическими реле трансформаторы подключают по схеме «треугольника»
Трансформатор напряжения — трансформатор, предназначенный для преобразования высокого напряжения в низкое в измерительных цепях. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.
- Виды трансформаторов:
- Заземляемый трансформатор напряжения — однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлён, или трёхфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена.
- Незаземляемый трансформатор напряжения — трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения.
- Каскадный трансформатор напряжения — трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединённых секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.
- Ёмкостный трансформатор напряжения — трансформатор напряжения, содержащий ёмкостный делитель.
- Двухобмоточный трансформатор — трансформатор напряжения, имеющий одну вторичную обмотку напряжения.
- Трёхобмоточный трансформатор напряжения — трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.
Источник: http://znakka4estva.ru/dokumenty/fizika-i-energetika/deystvie-magnitnogo-polya-na-elektricheskiy-tok