Закон кулона и его полевая трактовка — справочник студента

В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними.

Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

В этой статье мы расскажем простым языком закон Кулона и его применение на практике.

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле.

Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы.

Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Система воспитания в «республике шкид» - справочник студента

Оценим за полчаса!
  • И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.
  • Формула правила Кулона выглядит так:
  • Закон Кулона и его полевая трактовка - Справочник студента
  • Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия.

Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы.

Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна.

Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике.

Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

  1. Коэффициент с учетом величин системы СИ определяется в Н2*м2/Кл2. Он равен:
  2. Закон Кулона и его полевая трактовка - Справочник студента
  3. Во многих учебниках этот коэффициент можно встретить в виде дроби:
  4. Закон Кулона и его полевая трактовка - Справочник студента

Здесь Е0= 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

  • С учетом влияния диэлектрика имеет вид:
  • Закон Кулона и его полевая трактовка - Справочник студента
  • Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

  1. Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.
  2. Закон Кулона и его полевая трактовка - Справочник студента
  3. Закон Кулона и его полевая трактовка - Справочник студента

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

  • Закон Кулона и его полевая трактовка - Справочник студента
  • Сила, приложенная к первому заряду со стороны второго обозначается как F12. Тогда в векторной форме закон Кулона выглядит следующим образом:
  • Закон Кулона и его полевая трактовка - Справочник студента
  • Для определения силы приложенной ко второму заряду используются обозначения F21 и R21.

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования.

Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле.

Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода.

Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

Источник: https://samelectrik.ru/zakon-kulona-prostymi-slovami.html

§4. Закон Кулона. Электрическое поле

Закон Кулона сформулирован для силы взаимодействия двух точечных зарядов q1 и q2, т. е. для зарядов, размеры которых малы по сравнению с расстоянием r, на котором рассматривается данное взаимодействие, и имеет вид:

Закон Кулона и его полевая трактовка - Справочник студента
Закон Кулона и его полевая трактовка - Справочник студента
Закон Кулона и его полевая трактовка - Справочник студента

Он был установлен Ш. О. Кулоном (1736-1806) в 1785 г. Посредством прямых измерений сил взаимодействия между заряженными телами.

Закон Кулона (4.1) входит в число основных экспериментальных фактов, на которых построено учение об электричестве. Проверка его справедливости и установление границ применимости являются важнейшими задачами, на решение которых были направлены значительные усилия экспериментаторов.

Проверка закона (4.1) посредством Прямого измерения сил взаимодействия С очень большой точностью затруднительна, поскольку в распоряжении экспериментаторов нет покоящихся точечных зарядов. Поэтому С результатами экспериментов обычно Сравнивают следствия из закона Кулона и на Этой основе делаются заключения о Границах его применимости и точности.

Первая экспериментальная проверка закона была проведена в 1772 г. Г. Кавендишем (1731-1810) за 13 лет до открытия его Кулоном. Однако он не опубликовал своей работы и тем самым потерял приоритет на открытие.

Рукопись, содержащая описания его опытов, была найдена в архивах лишь примерно в конце 60-х годов XIX столетия.

Метод Кавендиша широко применялся и в последнее время позволил проверить закон кулона с большой точностью.

Закон Кулона многократно проверялся и в настоящее время достоверно установлено, что он справедлив для расстояний от 10М до10М. Нет сомнений, что и для больших расстояний закон Кулона так же хорошо выполняется, однако прямых экспериментальных проверок не проводилось.

Полевая трактовка закона Кулона.

До работ Фарадея закон Кулона трактовался с позиции Дальнодействия, т. е. Считалось, что одно тело действует на другое как бы без посредников. Поэтому и называлась это концепция как действие на расстоянии. В первой половине XIX в.

выработалась другая точка зрения на механизм взаимодействия, согласно которой Взаимодействие между телами осуществляется лишь посредством непрерывной «передачи сил» через пространство между телами. Такое представление получило название концепции Близкодействия.

Она была введена в науку Фарадеем (1791-1867) в ряде работ, опубликованных в период с 1831 по 1855 г. Вместе с идеей близкодействия в науку вошло представление о поле как посреднике, осуществляющем взаимодействие. В процессе научных исследований была доказана несостоятельность теории дальнодействия.

Согласно теории близкодействия взаимодействие выглядит так: заряд создает электрическое поле, которое действует на другой заряд, внесенный в это поле, т. е

Закон Кулона и его полевая трактовка - Справочник студентаИли Закон Кулона и его полевая трактовка - Справочник студента

Пусть имеется некоторое заряженное тело с зарядом , а точка находится на некотором расстоянии от него. Если в точку вносить пробные заряды Закон Кулона и его полевая трактовка - Справочник студента и измерять силу, которая действует на эти заряды: ,то можно установить что Закон Кулона и его полевая трактовка - Справочник студента и является величиной постоянной, зависящей лишь от заряда и расстояния до точки . Эту величину и назвали напряженностью электрического поля. Таким образом напряженность поля – это величина, равная отношению силы, действующей на заряд, внесенный в данную точку полч к величине этого заряда.

Читайте также:  Основные виды мышления - справочник студента

. (4.2)

  • Откуда следует, что
  • (4.3)
  • — величина, равная отношению силы внесенной в данную точку к величине заряда.

Если оба заряда точечные, то из (4.1) и (4.2) следует

  1. (4.4)
  2. Принцип суперпозиции.
  3. Экспериментально были установлены следующие факты:
  4. 1) сила взаимодействия двух точечных зарядов не изменяется в присутствии других зарядов;

2) сила, действующая на точечный заряд со стороны других точечных зарядов равна векторной сумме сил, действующих на него со стороны каждого из зарядов при отсутствии других, т. е. . Тогда

Закон Кулона и его полевая трактовка - Справочник студента

Это утверждение называется принципом суперпозиции. Оно отражает экспериментальный факт, составляющий одну из основ учения об электричестве. По своей роли он столь же важен, как и закон Кулона.

Справедливость принципа суперпозиции установлена для полей с напряженностью до 1022 В/м. Внутри атомов напряженность поля 1011 – 1017 В/м и лишь у поверхности очень тяжелых ядер 1022 В/м.

Если имеются заряженные тела, то напряженность поля в некоторой точке вычисляется следующим образом: тело разбивается на элементы DV, DS, Dl, содержащие заряд Dq, т. е.

  • , , , (4.6)
  • Где — линейная плотность зарядов.
  • Напряженность поля, создаваемого элементом DqВ некоторой точке равна
  • , (4.7)

Затем используя принцип суперпозиции, находим напряженность поля . (4.8)

Источник: https://www.webpoliteh.ru/4-zakon-kulona-elektricheskoe-pole/

Закон Кулона. Полевая трактовка закона. Напряженность электрического поля

Вопрос №1.

Электрический заряд. Модель точечного заряда. Инвариантность заряда. 3акон сохранения заряда.

  • Понятие заряда в электродинамике является первичным, основным понятием.
  • Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.
  • Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:
  • Существует два рода электрических зарядов, условно названных положительными и отрицательными.
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.
  • Фундаментальным свойством электрического заряда является его релятивистская инвариантность. Это свойство тесно связано с сохранением электрического заряда и означает в широком смысле, что в любой инерциальной системе отсчета полный электрический заряд сохраняется. Или в более узком смысле, что находящиеся в различных инерциальных системах наблюдатели, измеряя электрический заряд, получают одно и то же его значение. Таким образом, электрический заряд тела не зависит от того, движется тело или покоится.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 + … +qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы.

Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны.

Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Закон Кулона и его полевая трактовка - Справочник студента

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Вопрос №2.

Закон Кулона. Полевая трактовка закона. Напряженность электрического поля.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона: Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц.

Коэффициент k в системе СИ обычно записывают в виде:

где – электрическая постоянная.

В системе СИ элементарный заряд e равен:

e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

Полевая трактовка закона Кулона:

Если пробный заряд находится в точке пространства, в которой присутствуют поля нескольких точечных зарядов, то выполняется принцип независимости действия сил: Результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Закон Кулона и его полевая трактовка - Справочник студента Принцип суперпозиции
Закон Кулона и его полевая трактовка - Справочник студента Закон Кулона и его полевая трактовка - Справочник студента Закон Кулона и его полевая трактовка - Справочник студента

При заданном распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела.

Главное свойство электрического поля – действие на электрические заряды с некоторой силой.

Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика — напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:

Напряженность электрического поля – векторная физическая величина. Направление вектора Е в каждой точке пространства совпадает с направлением силы, действующей на положительный заряд.

Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это поле обозначают общим термином – электрическое поле.

Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции.

В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю

Если Q > 0, то вектор Е направлен по радиусу от заряда, если Q < 0, то вектор Е направлен к заряду.

Для наглядного изображения электрического поля используют силовые линии. Эти линии проводят так, чтобы направление вектора Е в каждой точке совпадало с направлением касательной к силовой линии. При изображении электрического поля с помощью силовых линий, их густота должна быть пропорциональна модулю вектора напряженности поля.

По принципу суперпозиции кулоновских полей точечных зарядов, изображенные на рис. 1.2.2 поля можно рассматривать как элементарные структурные единицы («кирпичики») любого электростатического поля.

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор r от заряда Q к точке наблюдения. Тогда при Q > 0 вектор Е параллелен r а при Q < 0 вектор E антипараллелен r . Следовательно, можно записать:

Вопрос №3.

Источник: https://studopedya.ru/1-91013.html

Закон Кулона простым языком: формулировка, формула, применение

Взаимодействия электрических зарядов исследовали ещё до Шарля Кулона. В частности, английский физик Кавендиш в своих исследованиях пришёл к выводу, что неподвижные заряды при взаимодействии подчиняются определённому закону. Однако он не обнародовал своих выводов. Повторно закон Кулона был открыт французским физиком, именем которого был назван этот фундаментальный закон.

Закон Кулона и его полевая трактовка - Справочник студентаРисунок 1. Закон Кулона

История открытия

Эксперименты с заряженными частицами проводили много физиков:

  • Г. В. Рихман;
  • профессор физики Ф. Эпинус;
  • Д. Бернулли;
  • Пристли;
  • Джон Робисон и многие другие.

Все эти учёные очень близко подошли к открытию закона, но никому из них не удалось математически обосновать свои догадки. Несомненно, они наблюдали взаимодействие заряженных шариков, но установить закономерность в этом процессе было непросто.

Кулон проводил тщательные измерения сил взаимодействия. Для этого он даже сконструировал уникальный прибор – крутильные весы (см. Рис. 2).

Закон Кулона и его полевая трактовка - Справочник студентаРис. 2. Крутильные весы

У придуманных Кулоном весов была чрезвычайно высокая чувствительность. Прибор реагировал на силы порядка 10-9 Н. Коромысло весов, под действием этой крошечной силы, поворачивалось на 1º. Экспериментатор мог измерять угол поворота, а значит и приложенную силу, пользуясь точной шкалой.

Благодаря гениальной догадке учёного, идея которой состояла в том, что при соприкосновении заряженного и незаряженного шариков, электрический заряд делился между ними поровну. На это сразу реагировали крутильные весы, коромысло которых поворачивалось на определённый угол. Заземляя неподвижный шарик, Кулон мог нейтрализовать на нём полученный заряд.

Таким образом, учёный смог уменьшать первоначальный заряд подвижного шарика кратное число раз. Измеряя угол отклонения после каждого деления заряда, Кулон увидел закономерность в действии отталкивающей силы, что помогло ему сформулировать свой знаменитый закон.

Формулировка

Кулон исследовал взаимодействие между шариками, ничтожно малых размеров, по сравнению с расстояниями между ними. В физике такие заряженные тела называются точечными. Другими словами, под определение точечных зарядов подпадают такие заряженные тела, если их размерами, в условиях конкретного эксперимента, можно пренебречь.

Для точечных зарядов справедливо утверждение: Силы взаимодействия между ними направлены вдоль линии, проходящей через центры заряженных тел. Абсолютная величина каждой силы прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними (см. рис. 3). Данную зависимость можно выразить формулой: |F1|=|F2|=(ke*q1*q2) / r2

Закон Кулона и его полевая трактовка - Справочник студентаРис. 3. Взаимодействие точечных зарядов

Остаётся добавить, что векторы сил направлены друг к другу для разноименных зарядов, и противоположно, в случае с одноимёнными зарядами. То есть между разноимёнными зарядами действует электрическое притяжение, а между одноимёнными – отталкивание.

Таким образом, закон Кулона описывает взаимодействие между двумя электрическими зарядами, которое лежит в основе всех электромагнитных взаимодействий.

Для того чтобы действовал сформулированный выше закон, необходимо выполнение следующий условий:

  • соблюдение точечности зарядов;
  • неподвижность заряженных тел;
  • закон выражает зависимости между зарядами в вакууме.

Границы применения

Описанная выше закономерность при определённых условиях применима для описания процессов квантовой механики. Правда, закон Кулона формулируется без понятия силы. Вместо силы используется понятие потенциальной энергии кулоновского взаимодействия. Закономерность получена путём обобщения экспериментальных данных.

Следует отметить, что на сверхмалых расстояниях (при взаимодействиях элементарных частиц) порядка 10 — 18 м проявляются электрослабые эффекты. В этих случаях закон Кулона, строго говоря, уже не соблюдается. Формулу можно применять с учётом поправок.

Нарушение закона Кулона наблюдается и в сильных электромагнитных полях (порядка 1018 В/м), например поблизости магнитаров (тип электронных звёзд). В такой среде кулоновский потенциал уменьшается не обратно пропорционально, а экспоненциально.

Кулоновские силы подпадают под действие третьего закона Ньютона: F1 = – F2. Они используются для описания законов всемирного тяготения. В этом случае формула приобретает вид: F = ( m1* m2 ) / r2 , где m1 и m2 – массы взаимодействующих тел, а r – расстояние между ними.

Закон Кулона стал первым открытым количественным фундаментальным законом, обоснованным математически. Его значение в исследованиях электромагнитных явлений трудно переоценить. С момента открытия и обнародования закона Кулона началась эра изучения электромагнетизма, имеющего огромное значение в современной жизни.

Коэффициент k

Формула содержит коэффициент пропорциональности k, который для согласования соразмерностей в международной системе СИ. В этой системе единицей измерения заряда принято называть кулоном (Кл) – заряд, проходящий за 1 секунду сквозь проводник, где силы тока составляет 1 А.

Коэффициент k в СИ выражается следующим образом: k = 1/4πε0, где ε0 – электрическая постоянная:   ε0 = 8,85 ∙10-12 Кл2/Н∙м2. Выполнив несложные вычисления, мы находим: k = 9×109 H*м2 / Кл2. В метрической системе СГС k =1.

На основании экспериментов было установлено, что кулоновские силы, как и принцип суперпозиции электрических полей, в законах электростатики описывают уравнения Максвелла.

Если между собой взаимодействуют несколько заряженных тел, то в замкнутой системе результирующая сила этого взаимодействия равняется векторной сумме всех заряженных тел. В такой системе электрические заряды не исчезают – они передаются от тела к телу.

Закон Кулона в диэлектриках

Выше было упомянуто, что формула, определяющая зависимость силы от величины точечных зарядов и расстояния между ними, справедлива для вакуума. В среде сила взаимодействия уменьшается благодаря явлению поляризации.

В однородной изотопной среде уменьшение силы пропорционально определённой величине, характерной для данной среды. Эту величину называют диэлектрической постоянной. Другое название –  диэлектрическая проницаемость. Обозначают её символом ε.

В этом случае k = 1/4πεε0.

Диэлектрическая постоянная воздуха очень близка к 1. Поэтому закон Кулона в воздушном пространстве проявляется так же как в вакууме.

Интересен тот факт, что диэлектрики могут накапливать электрические заряды, которые образуют электрическое поле. Проводники лишены такого свойства, так как заряды, попадающие на проводник, практически сразу нейтрализуются. Для поддержания электрического поля в проводнике необходимо непрерывно подавать на него заряженные частицы, образуя замкнутую цепь.

Читайте также:  Теория личности а. маслоу - справочник студента

Применение на практике

Вся современная электротехника построена на принципах взаимодействия кулоновских сил.  Благодаря открытию Клоном этого фундаментального закона развилась целая наука, изучающая электромагнитные взаимодействия. Понятие термина электрического поля также базируется на знаниях кулоновских сил. Доказано, что электрическое поле неразрывно связано с зарядами элементарных частиц.

Грозовые облака не что иное как скопление электрических зарядов. Они притягивают к себе индуцированные заряды земли, в результате чего появляется молния. Это открытие позволило создавать эффективные молниеотводы для защиты зданий и электротехнических сооружений.

На базе электростатики появилось много изобретений:

  • конденсатор;
  • различные диэлектрики;
  • антистатические материалы для защиты чувствительных электронных деталей;
  • защитная одежда для работников электронной промышленности и многое другое.

На законе Кулона базируется работа ускорителей заряженных частиц, в частности, функционирование Большого адронного коллайдера (см. Рис. 4).

Закон Кулона и его полевая трактовка - Справочник студентаРис. 4. Большой адронный коллайдер

Ускорение заряженных частиц до околосветовых скоростей происходит под действием электромагнитного поля, создаваемого катушками, расположенными вдоль трассы. От столкновения распадаются элементарные частицы, следы которых фиксируются электронными приборами. На основании этих фотографий, применяя закон Кулона, учёные делают выводы о строении элементарных кирпичиков материи.

Использованная литература:

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов.
  3. Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм.

Видео по теме

Источник: https://www.asutpp.ru/zakon-kulona.html

1

Закон
Кулона сформулирован для силы
взаимодействия двух точечных зарядов
q1 и q2, т. е. для зарядов, размеры которых
малы по сравнению с расстоянием r, на
котором рассматривается данное
взаимодействие, и имеет вид:

Где —
величины зарядов, —
расстояние между ними, 

png» width=»17″>-
сила взаимодействия, —
коэффициент пропорциональности: =9.

В некоторых случаях  записывают: =,
где 

ErXB/img-B9PXpE.png» width=»144″> —
электрическая постоянная, тогда

Полевая
трактовка закона Кулона.

До
работ Фарадея закон Кулона трактовался
с позиции Дальнодействия,
т. е. Считалось,
что одно тело действует на другое как
бы без посредников. Поэтому и называлась
это концепция как действие на
расстоянии.

 Затем
выработалась другая точка зрения на
механизм взаимодействия, согласно
которой Взаимодействие
между телами осуществляется лишь
посредством непрерывной «передачи сил»
через пространство между телами.
 Такое
представление получило название
концепции Близкодействия.

Она была введена в науку Фарадеем. Вместе
с идеей близкодействия в науку вошло
представление о поле как посреднике,
осуществляющем взаимодействие.
 В
процессе научных исследований была
доказана несостоятельность теории
дальнодействия.

Согласно теории
близкодействия взаимодействие выглядит
так: заряд создает электрическое поле,
которое действует на другой заряд,
внесенный в это поле, т. е

Или 

Пусть
имеется некоторое заряженное тело с
зарядом ,
а точка  находится
на некотором расстоянии от него. Если
в точку 

png» width=»16″> вносить
пробные заряды  и
измерять силу, которая действует на эти
заряды: 

png» width=»17″>,то
можно установить что  и
является величиной постоянной, зависящей
лишь от заряда 

png» width=»17″> и
расстояния до точки .

Откуда
следует, что


величина, равная отношению силы внесенной
в данную точку к величине заряда.

Если
оба заряда точечные, то из (4.1) и (4.2)
следует

  • Принцип
    суперпозиции.
  • Экспериментально
    были установлены следующие факты:
  • 1)
    сила взаимодействия двух точечных
    зарядов не изменяется в присутствии
    других зарядов;

Это
утверждение называется принципом
суперпозиции.

Если
имеются заряженные тела, то напряженность
поля в некоторой точке вычисляется
следующим образом: тело разбивается на
элементы DV,DS,Dl,
содержащие заряд Dq,
т. е.

, , ,
(4.6)

Напряженность
поля, создаваемого элементом DqВ
некоторой точке равна

Источник: https://studfile.net/preview/841047/

Закон Кулона: определение электрического поля, электрический диполь

В статье расскажем про электрические заряды и электрификации тел, аддитивность полей и определение электрического поля, подробно разберем закон Кулона и электрический диполь. В конце статьи будет разобранная задача на электрическое поле.

Электрические заряды и электрификация тел

Электрические заряды, положительные и отрицательные, квантуются, то есть имеют наименьшее значение, которое дальше невозможно разделить.

 Нагрузки не могут быть созданы или уничтожены в том смысле, что общая нагрузка в любом процессе остается постоянной. Когда атом не ионизирован, его полный заряд равен нулю.

 Атомы с избыточным отрицательным зарядом называются анионами, а с недостатком отрицательного заряда (с избыточным положительным зарядом) мы называем катионами.

Электрификация тел заключается в переносе нагрузки с одного из них на другой. Проще говоря, тела могут быть наэлектризованы их взаимным трением, что связано с реконструкцией двойного электрического слоя, расположенного на поверхности каждого из этих тел.

 Другим способом электрификации является электрификация индукцией, как показано на рисунках ниже. Здесь металлические сферы (белые), установленные на изоляторе (черный стержень), подвергаются электрификации.

 Разделение зарядов происходит при приближении к отрицательно заряженному изоляционному стержню, наэлектризованному трением о ткань.

В системе СИ единица измерения составляет 1 кулон (1 С). Статический заряд составляет порядка 10 -6 С (микрокульм, около 10 13 электронов). Заряд электрона составляет 1,602 × 10 -19 с .

Формулировка и объяснение закона Кулона

Закон Кулона (1736 — 1806) — закон, описывающий силу взаимодействия между точечными электрическими зарядами Q и q, находящимися на расстоянии R и в покое друг с другом.

Сила взаимодействия таких зарядов или кулоновская сила описывается формулой:

В системе СИ:

Формула Кулона автоматически выражает тот факт, что высвобожденные нагрузки отталкивают друг друга.

Кулон показал, что для точечных нагрузок сила удара равна:

В более поздних, очень тщательных экспериментах было показано, что квадрат в знаменателе равен 2 с точностью 2 ± 2 × 10 -16 . Направление кулоновской силы совпадает с направлением прямой, соединяющей два точечных заряда. Уравнение Кулона применимо только к случаю точечных нагрузок.

 Когда распределение нагрузки является пространственным, то должна быть выполнена соответствующая сумма или интегрирование.

 Помимо того, что закон Кулона применяется только к точечным нагрузкам, он описывает силу, действующую между ними только тогда, когда заряды находятся в покое друг с другом.

Закон Кулона в диэлектриках

Уменьшение напряженности поля в диэлектриках в ε-кратном направлении имеет большое практическое значение. Одним из основных является уменьшение кулоновской силы в ε-кратном размере при погружении взаимодействующих зарядов в диэлектрик:

Благодаря этому эффекту возможно растворить вещество с ионными связями в растворителях с высокой проницаемостью ε. В частности, возможно засоление посуды, поскольку в воде с огромным значением ε = 81 кристалл NaCl, состоящий из катионов Na+ и анионов Cl—, поддерживаемый кулоновскими силами, «распадается» при переходе в раствор электролита.

Определение электрического поля (Е)

Электрическое поле (напряженность поля) E в данной точке определяется как значение, равное отношению силы F, действующей на положительный испытательный заряд q, к значению нагрузки:

Движение заряженных частиц в поле происходит под действием силы F = Q*E.

Аддитивность полей

Поле E является аддитивным вектором, что означает, что результирующее электрическое поле представляет собой векторную сумму полей 1 , 2 , 3 …, полученных из отдельных зарядов:

Линии напряженности электрических полей

Концепция силовых линий поля была также введена Майклом Фарадеем (1791-1867). Линии напряженности поля представляют собой воображаемые кривые в пространстве, находящиеся в каждой точке, касающейся вектора E в этой точке.

 Это также означает, что в каждой точке линии поля имеется касательный вектор силы, действующий в этом поле для испытательной нагрузки (небольшой положительный заряд).

 Как показано на рисунке ниже, силовая линия — это траектория положительного испытательного заряда (маленький красный шарик), движущегося в поле E , причем сила F является результирующей (векторной суммой) двух сил: силы, отталкивающей испытательный заряд от положительного заряда Q, и силы притяжения испытательная нагрузка на отрицательный заряд q. Такая картина силовых линий верна только тогда, когда пренебрегают силами инерции (центробежными), возникающими из-за ненулевой массы груза. Линии напряженности поля никогда не пересекаются друг с другом. Представляя силовые линии, принимается соглашение о вытягивании, согласно которому плотность силовых линий пропорциональна напряженности поля в этом месте. Силовые линии в окрестности системы двух точечных нагрузок, положительной и отрицательной, одинакового абсолютного значения показаны на рисунке:

Один заряд, помещенный в вакуум, окружен радиальной системой силовых линий.

Электрический диполь

Электрический диполь представляет собой жесткую систему из двух точечных нагрузок + Q и -Q, удаленных друг от друга на 1.

Диполь помещается в однородное электрическое поле E, так что вектор E образует угол θ с линией, соединяющей два заряда, называемой осью диполя.

 Сила F 1 = QE направлена ​​в сторону поля, а сила F 2 = — QE в противоположном направлении. Обе эти силы создают пару сил, создающих момент силы:

Произведение заряда Ql на расстояние Q называется дипольным моментом. Вектор дипольного момента направлен от отрицательного к положительному заряду (в отличие от вектора для силовых линий поля).

Момент силы, действующей на диполь, выражается в виде векторного произведения.

Значение этого вектора:

Если электрическое поле не является однородным, то диполь действует не только как крутящий момент, но и как результирующая сила. Причина этого заключается в том, что оба дипольных заряда находятся в полях немного различной интенсивности, и силы, действующие на эти заряды, не уравновешены.

Ненулевым электрическим дипольным моментом обладают такие молекулы, как H2O, CO, …

Симметричные молекулы, например O2, N2, H2, … не имеют длительных дипольных моментов.

Единицей дипольного момента в системе СИ является C · m (кулон · метр). Поскольку это очень большая единица, в литературе обычно используется единица, называемая debay (D), которая происходит из системы CGS.

Два элементарных заряда (равных зарядам электрона или протона), разнесенных друг от друга на расстоянии 1 ангстрем (10 -10 м), создают дипольный момент со значением:

Задача

Найти электрическое поле E, создаваемое диполем. Для простоты находим это поле в плоскости, перпендикулярной оси диполя и проходящей через его центр:

Поля от положительных и отрицательных зарядов обозначены + и E — соответственно. Векторная сумма этих двух полей образует результирующее поле E = E+ + E_. Из-за симметричного положения точки, где мы исследуем поле, длины обоих E+ и E_ векторов — одинаковы:

Вертикальные компоненты полей E+ и E_ компенсируют друг друга, а сумма горизонтальных компонентов дает длину E искомого вектора E :

где p = Ql — дипольный момент диполя. Для r >> l (вдали от оси диполя) значение поля E равно:

Мы видим, что поле вокруг диполя исчезает с увеличением расстояния быстрее (как 1 / r 3 ), чем поле вокруг одиночного заряда, которое исчезает как 1 / r 2 .

Источник: https://meanders.ru/zakon-kulona.shtml

Закон Кулона

Основной закон электростатики, выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой, прямо пропорциональной произведению величин этих зарядов и обратно пропорциональной квадрату расстояния между ними и диэлектрической проницаемости среды, в которой находятся заряды.

Величина численно равна силе, действующей между двумя расположенными в вакууме на расстоянии 1 м друг от друга точечными неподвижными зарядами по 1 Кл каждый.

Закон Кулона является одним из экспериментальных обоснований электродинамики. Открыт в 1785 году.

Данный текст является ознакомительным фрагментом.

Следующая глава

ЗАКОН ОМА
Проводник — это просто пассивная составная часть электрической цепи. Такое мнение превалировало вплоть до сороковых годов девятнадцатого столетия. Так зачем зря тратить время на его исследование?Одним из первых ученых, занявшихся вопросом проводимости

Это закон
Сегодня самый известный автор, сюжеты которого построены на случаях из судебной практики, – Джон Гришэм. После окончания юридической школы Университета Миссисипи он в течение десяти лет имел адвокатскую практику, специализируясь на уголовных делах и судебных

Закон
ЗАКОН — в широком смысле слова все нормативные правовые акты, любые установленные государством общеобязательные правила. В собственном юридическом смысле 3. — нормативный акт, принятый в особом порядке высшим представительным органом законодательной власти либо

7.1. Среды обитания организмов. Факторы среды: абиотические, биотические. Антропогенный фактор. Закон оптимума. Закон минимума. Биологические ритмы. Фотопериодизм
Основные термины и понятия, проверяемые в экзаменационной работе: абиотические факторы, антропогенные

Глава 5. 1750 г. — 1799 г.
Громоотвод Франклина, теории Эпинуса и Симмера, закон Кулона, открытие Гальвани, «ряд Вольта» 1752 г. Далибар
В 1852 году сообщения об опытах американца Франклина по извлечению электричества из атмосферы привели к постройке опытных громоотводов

Закон
Закон — зафиксированный порядок тех или иных явлений окружающей действительности.Законы можно разделить на объективные (к счастью, не зависящие от воли человека) и субъективные — те, которые являются следствием сложившихся традиций человеческого общежития или

Закон Кулона
Основной закон электростатики, выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой, прямо пропорциональной произведению величин этих зарядов и

Закон Ома
Один из основных законов электрического тока: сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.Справедлив для металлических проводников и электролитов,

ЗАКОН — существенная, необходимая, устойчивая, повторяющаяся связь (отношение) между явлениями. Категория 3. выражает в своем содержании тот, не зависящий от нашего сознания, факт, что предметы и явления окружающего мира функционируют и развиваются в соответствии с

Закон «Икс» «Не возжелайте бывшего парня твоей подруги!»
Евангелие от Мартина
(Как гласит легенда, это Евангелие было утеряно во время переселения.)Запрет касается всех твоих бывших подруг и членов их семей до третьего поколения включительно.
Исключения:
• Если

Закон
Законы и правилаОдин человек плюс закон – уже большинство. (Калвин Кулидж)Никто еще не был повешен за нарушение духа законов. (Гроувер Кливленд)Нами правит не закон, а законники. («20,000 Quips & Quotes»)Законы принимаются для того, чтобы доставлять неприятности гражданину,

Источник: https://info.wikireading.ru/155787

Ссылка на основную публикацию