Техническое использование переменных токов. генераторы и электродвигатели — справочник студента

Электрический генератор тока – это устройство, предназначенное для превращения неэлектрических видов энергии (химической, механической, тепловой) в электрическую. При этом его конструкция базируется на использовании принципа электроманитной индукции.

Принцип действия и устройство простейшего генератора переменного тока

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаГенератор переменного тока

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Электромагнитная индукция – это явление, которое было открыто в 1831 году английским физиком Майклом Фарадеем (1791-1867), обнаружившим, что при прохождении изменяющегося во времени магнитного потока сквозь замкнутый проводящий контур в последнем возникает электрический ток. Именно этот принцип и положен в основу любого генератора.

На практике принцип электромагнитной индукции реализуется следующим образом: электрический ток возникает в замкнутой рамке (роторе) при пересечении ее вращающимся магнитным полем, образуемым в зависимости от назначения и конструкции генератора постоянными магнитами или специальными обмотками возбуждения. При вращении рамки изменяется величина магнитного потока. Чем быстрее она вращается, тем выше величина выходного напряжения.

В 1827 году этот эффект обнаружил и использовал при создании оригинальной модели генератора электрического тока венгерский физик Аньош Иштван Йедлик (1800-1895). Однако, полагая его известным, ученый не запатентовал свое открытие, а о создании первой динамо-машины объявил только в 1850 году.

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаПринцип действия генератора переменного тока

Для отвода электрического тока рамка оснащается токосъемником, который превращает ее в замкнутый контур и обеспечивает постоянный контакт вращающейся рамки со стационарно расположенными элементами генератора. Подпружиненные щетки прижимаются к коллекторным кольцам и таким образом электрический ток поступает на выходные клеммы генератора.

Вращаясь, половинки рамки последовательно проходят возле полюсов магнита. При этом происходит циклическая смена направления движения возникающего тока – у каждого полюса ток движется в одну сторону.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Принципиальные методы измерения напряженности и индукции магнитного поля в магнетиках - справочник студента

Оценим за полчаса!

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаКонструкция якоря генератора постоянного тока

В зависимости от конструкции коллектора генератор может вырабатывать как постоянный, так и переменный ток.

  • В генераторах постоянного тока для каждой половины обмотки в коллекторном узле имеются изолированные друг от друга полукольца. Благодаря тому, что эти полукольца постоянно меняются щетками, ток не изменяет своего направления, а просто пульсирует.
  • В генераторах переменного тока концы рамки привязаны к контактным кольцам и вся эта конструкция вращается вокруг своей оси. При вращении рамки, щетки, каждая из которых плотно примыкает к своему кольцу, обеспечивают надежный токоотвод. При этом циклической смены положения щеток не происходит.

Вращающаяся часть генератора называется ротором, а неподвижная – статором.

Принцип действия электрогенераторов переменного и постоянного тока идентичен. Отличаются они между собой конструкцией контактных колец, расположенных на вращающемся роторе и конфигурацией обмоток.

В генераторах переменного тока часто используют оригинальное техническое решение, базирующееся на том, что ЭДС возникает в проводнике не только когда он вращается в магнитном поле, но и в том случае, когда относительно неподвижного проводника вращается само магнитное поле.

Этот эффект широко используется разработчиками, которые располагают на вращающемся роторе электрические или постоянные магниты. При этом напряжение снимается со стационарно установленной обмотки, что дает возможность избавиться от сложных конструкций токосъемных узлов.

Электрогенераторы переменного тока

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаВыпускается огромное количество самых разнообразных электрогенераторов переменного тока. Классифицировать их можно по таким параметрам:

  • конструктивное исполнение;
  • способ возбуждения;
  • количество фаз.

По способу возбуждения потребителю могут встретиться агрегаты:

  • с независимым возбуждением – обмотка возбуждения запитывается постоянным током от независимого источника электропитания;
  • с самовозбуждением – в обмотку возбуждения подается выпрямленный ток от самого генератора;
  • с возбуждением от постоянных магнитов – обмотка возбуждения отсутствует;
  • с возбуждением от возбудителя – маломощного генератора постоянного тока, «сидящего» на одном валу с обслуживаемым генератором.

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаСхема трехфазного генератора

По количеству фаз электрогенераторы бывают:

  • однофазные;
  • двухфазные;
  • трехфазные.

На практике чаще всего встречаются трехфазные генераторы переменного тока. Связано это с рядом преимуществ, характерных для этого вида агрегатов:

  • получение экономического эффекта при разработке систем передачи электроэнергии на большие расстояния – снижение материалоемкости трансформаторных устройств и силовых проводов; Этому способствует наличие кругового магнитного поля;
  • увеличенный эксплуатационный ресурс, который обеспечивает уравновешенность системы;
  • одновременное использование линейного и фазового напряжения.

Конструктивно трехфазный электрогенератор имеет три независимые обмотки, расположенные в статоре по окружности со смещением в 120° относительно друг друга.

При этом каждая обмотка представляет собой однофазный генератор, которая способна подавать переменное напряжение потребителю R. Такая единичная обмотка и получила название «фаза».

Фазные обмотки могут соединяться между собой «треугольником» или «звездой».

Существуют и другие схемы соединения обмоток, например, шестипроводная система «Тесла» или соединение «Славянка» (сочетание шести обмоток в виде одной «звезды» и одного «треугольника), однако широкого распространения они не получили.

Роль рамки в устройствах, вырабатывающих переменный ток, исполняет электромагнит, который вращаясь, смещает индуцированные в обмотках переменные ЭДС на треть такта относительно друг друга.

Среди множества генераторов переменного тока различают два основных вида их конструктивного исполнения: синхронные и асинхронные. В последнее время, учитывая большое количество сложных электронных устройств, управляемых при помощи микропроцессоров, появился новый тип электрогенераторов – инверторный.

Синхронные электрогенераторы

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаУстройство синхронного генератора

Синхронный генератор переменного тока конструктивно состоит из двух частей – подвижного ротора и неподвижного статора.

При вращении ротора, представляющего собой электромагнит с сердечником и обмоткой возбуждения, подключенный к внешнему источнику питания при помощи щеточного механизма, в обмотке статора индуцируется ЭДС, которая подается на выходные клеммы генератора.

Такая конструкция исключает необходимость применения скользящих контактов, что существенно упрощает конструкцию агрегата.

Изначально магнитный поток возбуждается от стороннего возбудителя, закрепленного на общем валу и подключаемого к системе при помощи муфты.

В синхронных электрогенераторах малой мощности обмотка возбуждения запитывается за счет выпрямленного тока. При этом электрическая цепь образуется за счет активации трансформаторов, входящих в цепь нагрузки. Туда же включен и полупроводниковый выпрямитель. В состав основной электрической цепи входят:

  • обмотка возбуждения;
  • регулировочный реостат.

Основная особенность синхронного генератора – частота генерируемого электрического тока пропорциональна скорости вращения ротора.

Асинхронные электрогенераторы

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаАсинхронный генератор переменного тока отличается от синхронного отсутствием жесткой связи между частотами вращения ротора и индуцированной ЭДС. Разница между этими параметрами называется «скольжением». Между ротором и статором асинхронного генератора имеется воздушный зазор. При этом на частоту вырабатываемой ЭДС влияет тормозной момент, возникающий при подключении нагрузки и препятствующий вращению ротора. Поэтому электроэнергия в асинхронных электрогенераторах вырабатывается при увеличенной скорости прокручивания ротора.

Конструкция асинхронных генераторов отличается простотой, однако имеет при этом худшие, по сравнению с синхронными агрегатами, технические характеристики – погрешность по частоте может достигать 4%, а по величине напряжения – до 10%.

Кроме того асинхронные электрогенераторы критичны к величине пускового тока.

Поэтому эксплуатировать их рекомендуется совместно со стабилизаторами, а в отдельных случаях, например, для плавного пуска электродвигателя, может понадобиться преобразователь частоты.

Инверторные генераторы

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаИнверторный генератор FUBAG Ti 3200

Инверторный электрогенератор – это обычный асинхронный генератор, на выходе которого установлен дополнительный стабилизатор выходных параметров.

Работает он следующим образом: вырабатываемое асинхронным генератором напряжение поступает в инвертор, где сначала выпрямляется, а затем из полученного постоянного напряжения формируются импульсы заданной частоты и скважности. На выходе устройства эти импульсы преобразуются в синусоидальное напряжение с почти идеальными техническими характеристиками.

Привод генераторов переменного тока

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаБензиновый генератор Green-Field GF4500E

В бытовых условиях ротор генератора приводят в действие при помощи двигателей внутреннего сгорания (ДВС), работающих на таких видах топлива, как бензин или дизельное топливо. При этом эксплуатационный ресурс бензиновых генераторов, оснащенных двухтактными ДВС составляет порядка 500 часов в год (не более 4 часов в сутки); четырехтактными ДВС достигает 5000 часов в год.

Использовать бензиновые электрогенераторы целесообразно при непродолжительных отключениях электричества и/или для выезда на природу.

Генераторы, работающие на дизельном топливе, отличаются большой мощностью и значительно долговечнее бензиновых. Среди них встречаются модели с воздушным и жидкостным охлаждением. Агрегаты с воздушным охлаждением рекомендуется применять в тех местах, где электричество отключают часто и надолго.

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаДизельный генератор ONIS VISA P 14 FOX

Пользоваться такими бытовыми устройствами предельно просто – нужно залить топливо в бак, поворотом ключа запустить двигатель и подключить нагрузку. Их панель управления снабжена всеми необходимыми и интуитивно понятными надписями и обозначениями.

Дизельные электрогенераторы с жидкостным охлаждением – это устройства совсем другой категории. Они способны работать сутками и используются в основном на предприятиях в качестве источников резервного питания.

Промышленные генераторы, предназначенные для выработки переменного тока и подачи его потребителям на большие расстояния с помощью высоковольтных линий электропередач (ЛЭП), работают за счет активации гидравлических или паровых турбин. В таких агрегатах роторный механизм соединяется непосредственно с колесом турбины.

Турбинные электрогенераторы отличаются большой мощностью (до 100000 кВт) и способны генерировать переменный ток напряжением до 16 кВ. При этом длина и диаметр их ротора может достигать 6,5 и 15 метров соответственно, а скорость вращения последнего находится в диапазоне 1500…3000 об/мин. Устанавливают такие агрегаты в отдельных помещениях на специально подготовленных бетонных основаниях.

Опции и возможности бытовых электрогенераторов

Для удобства эксплуатации производители оснащают свою продукцию рядом полезных опций, среди которых можно выделить:

  • устройство автоматического запуска агрегата при отключении электроэнергии;
  • наличие встроенного УЗО, отключающего устройство от электросети при пробое изоляции и появлении тока утечки;
  • контроль параметров и отображение их на дисплее;
  • защита от перегрузки.
Читайте также:  Экологическое воспитание - справочник студента

При подключении к электрогенератору нагрузки, величина которой буде ниже паспортной, агрегат начнет «съедать» часть жидкого топлива впустую, не используя полностью свои возможности.

Не будет лишним наличие в комплекте поставки специального шумогасящего кожуха, топливного бака увеличенного объема, кожуха, защищающего агрегат от воздействия низкой температуры и пр.

Особенности установки

Использование дизельного генератора

Потенциальный владелец генератора переменного тока перед приобретением должен озаботиться подготовкой места для его установки.

Независимо от того, где будет установлен такой агрегат, в помещении или на свежем воздухе, для него понадобится ровная и твердая площадка.

Установка электрогенератора на неровной площадке приведет к увеличению вибрации, что ускорит износ деталей и может спровоцировать выход дорогостоящего устройства из строя.

Устанавливая генератор в помещении, важно предусмотреть наличие вытяжной вентиляции. Кроме того, во время работы агрегата рекомендуется оставлять дверь помещения открытой, что в свою очередь потребует установить в дверном проеме решетку, перекрывающую посторонним, а главное детям, доступ в опасную зону.

Соединяют электрогенератор с электросетью в строгом соответствии с требованиями, изложенными в инструкции по эксплуатации. При этом электрический кабель необходимо подключить после вводного автомата и электросчетчика.

Источник: https://StrojDvor.ru/elektrosnabzhenie/ustrojstvo-i-princip-dejstviya-generatorov-peremennogo-toka/

Синхронный генератор переменного тока: устройство, принцип работы, применение

Электричество – единственный вид энергии, которую легко можно передать на большие расстояния, а затем преобразовать её в механическую, тепловую или превратить в световое излучение.

Саму же электроэнергию также можно получить разными способами: химическим, тепловым, механическим, фотоэлектрическим и др. Но именно механический способ, который основан на применении генераторов, оказался самым эффективным.

Среди этих источников электроэнергии широкое применение нашёл синхронный генератор переменного тока.

Практически вся электроэнергия, используемая в быту и на производстве, вырабатывается генераторами этого типа. Они заслуживают того, чтобы более подробно рассмотреть их устройство и разобраться в принципе работы этих удивительных синхронных машин.

Устройство

В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.

Бесщёточные генераторы.

Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.

В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.

Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаРис. 1. Модель генератора с магнитным ротором

Пояснение:

  • схема устройства;
  • схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
  • модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».

Синхронные машины с индукторами.

Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.

Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаРис. 2. Строение синхронного генератора средней мощности

Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника.

По количеству фаз синхронные генераторы делятся на:

  • однофазные;
  • двухфазные;
  • трёхфазные.

По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.

По способу соединения фазных обмоток различают трёхфазные генераторы:

  • соединённые по шестипроводной системе Тесла (не нашли практического применения);
  • «звезда»;
  • «треугольник»;
  • сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».

Самое распространённое соединение – «звезда» с нейтральным проводом.

Принцип работы

Рассмотрим принцип генерации тока на примере контурной рамки, помещённой между магнитными полюсами. (Рис. 3)

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаРис. 3. Схема, объясняющая принцип работы генератора

Если заставить рамку вращаться (по направлению стрелок), то она будет пересекать магнитные силовые линии. При этом, по закону электромагнитной индукции, в рамке индуцируется электрический ток, который проявляется при подключении нагрузки к щёткам. Его направление можно определить по правилу буравчика. На схеме направление тока показано чёрными стрелками.

Обратите внимание на то, что на участках рамки ab и cd ток движется в противоположных направлениях. Эти направления меняются при переходе участков рамки от одного полюса к другому полюсу магнита. Если каждый вывод рамки подключить к отдельному кольцу (на рисунке они подключены к коллектору!), то на выходе мы получим переменный ток.

Величина тока пропорциональна скорости вращения ротора. Кроме того, переменный ток характеризуется ещё одним параметром – частотой. Эта величина напрямую зависит от частоты вращения вала.

Частота тока в электросетях строго соблюдается. В России и в ряде других стран она составляет 50 Гц, то есть 50 колебаний в секунду.

Этот параметр довольно легко вычислить из таких соображений: за один оборот рамки (или двухполюсного магнита) происходит одно изменение направления тока. Если вал синхронного генератора делает 1 оборот в секунду, то частота переменного тока составит 1 Гц. Для получения частоты 50 Гц необходимо обеспечить 50 оборотов статора в секунду или 3000 об./мин.

При возрастании числа полюсов заданная частота удерживается путём снижения скорости вращения статора. (обратно пропорциональная зависимость).

Так, для четерёхполюсного статора (число полюсов в два раза больше) для поддержания частоты 50 Гц скорость вращения вала необходимо снизить в два раза.

Соответственно если используется 6 полюсов, то частота вращения вала должна уменьшиться в три раза – до 1000 об./мин.

Заметим, что в некоторых странах, таких как США, Япония и др. существуют другие стандарты – 60 Гц, а переменный 400 Гц используется, например, в бортовой сети современных самолётов.

Регулирование частоты

Достигнуть требуемых параметров частоты можно 2 путями:

  1. Сконструировать генератор с определённым количеством полюсов электромагнитов.
  2. Обеспечить соответствующую расчётную частоту вращения вала.

Например, в тихоходных гидротурбинах, вращающихся со скоростью 150 об./мин. для регулирования частоты число полюсов синхронных генераторов увеличивают до 40. На дизельных электростанциях, при скоростях вращения 750 об./мин., оптимальное число полюсов – 8.

Регулирование ЭДС

В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений.

Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр.

Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.

Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаРис. 4. Схема регулировки напряжения

Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях.

Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно.

Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студентаРис. 5. Схема подключения генератора к бортовой сети авто

Применение

У синхронных генераторов переменного тока есть одна важная особенность: они поддаются синхронизации с другими подобными электрическими машинами.

При этом синхронные скорости и ЭДС параллельно включенных альтернаторов совпадают, а фазовый сдвиг равен нулю.

Данное обстоятельство позволяет применять устройства в промышленной энергетике и подключать резервные генераторы при превышении номинальных мощностей в часы пиковых нагрузок.

Трёхфазные тяговые генераторы применяют на тепловозах. Переменные токи для питания двигателей выпрямляются полупроводниковыми устройствами. Сегодня в России уже выпускаются тепловозы на базе асинхронных электродвигателей, не требующих выпрямления тока. В режиме торможения они работают в качестве асинхронных генераторов.

Синхронные генераторы устанавливают на гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей. Развивая активную мощность при номинальных нагрузках, они позволяют экономить дорогое топливо.

Существует много других сфер применения. Например, мобильные мини-электростанции, бытовые генераторы тока, как однофазный двигатель и т. п.

Источник: https://www.asutpp.ru/sinhronnyy-generator-peremennogo-toka.html

Электрические машины: виды, классификация, принципы работы

Электрической машиной принято считать электромеханическое устройство, способное преобразовать механическую энергию в электрическую и обратно. В первом случае происходит выработка электроэнергии (машины являются генераторами), во втором – её потребление (электродвигатели).

Последние необходимы для того чтобы привести в движение транспортные средства, станки и другие механизмы.Генераторы и электродвигатели – основная сфера использования электрических машин.

Но они могут быть также использованы и в качестве электромеханических преобразователей (умформеров) – агрегатов, которые способны преобразовывать электрическую энергию в различные её формы.

Преобразователь постоянного тока в переменный называется инвертором, увеличитель мощности электрических сигналов – электромашинным усилителем, а устройство способное отрегулировать напряжение переменного тока – индукционным регулятором.

Отдельной категорией можно назвать также сельсины – самосинхронизирующиеся индукционные машины, которые обеспечивают возможность вращения нескольких осей независимо друг от друга с точки зрения механики. Такие устройства используются в электронике, в составе сварочных аппаратов для регулировки их рабочей мощности.

Классификация электрических машин

Коллекторные и бесколлекторные электрические машины

Деление на коллекторные и бесколлекторные электрические машины существует благодаря принципиальным отличиям в принципе их действия.

Коллекторные машины

Коллекторные агрегаты работают только на постоянном токе, поэтому отличительной чертой их конструкции является наличие механического преобразователя, который позволяет получить постоянный ток из переменного или наоборот. Они могут использоваться в качестве двигателя или генератора без необходимости внесения изменений в схему.

Их существенными преимуществами являются отличные пусковые характеристики и возможность плавной регулировки частоты вращения вала.

Именно поэтому коллекторные электрические машины постоянного тока нашли очень широкое применение в качестве приводов для прокатных станов, электротранспорта, источников питания для сварочных аппаратов, электролитических ванн.

В самолётах, тракторах, автомобилях такие двигатели приводят в движение всё используемое вспомогательное оборудование.

Небольшая группа коллекторных машин небольшой мощности выполняется в виде универсальных двигателей, которые уникальны тем, что могут работать и от постоянного, и от переменного тока.

Бесколлекторные машины

Бесколлекторные агрегаты работают только с переменным током и делятся на синхронные и асинхронные машины. Синхронные машины широко применяются как в качестве генераторов, так и электродвигателей, в то время как асинхронные – в основном служат двигателями.


Рисунок 1. Синхронный генератор (упрощённая схема устройства)
1 – сердечник статора (неподвижная часть машины), 2 – обмотка статора, 3 – вал, 4 – ротор двигателя (постоянный магнит).Рисунок 1. Синхронный генератор (упрощённая схема устройства)

1 – сердечник статора (неподвижная часть машины), 2 – обмотка статора, 3 – вал, 4 – ротор двигателя (постоянный магнит).

Принцип работы такого генератора заключается в том, чтобы при помощи привода (двигателя внутреннего сгорания или турбины) через ременную передачу привести в движение ротор генератор. Одновременно в обмотке статора наводится ЭДС (указано стрелками) и благодаря замыканию её на нагрузке в цепи появляется ток.

Когда речь идёт о синхронном электродвигателе, то его работа начинается с подачи тока на обмотку статора. Это приводит к вращению магнитного поля, которое при взаимодействии с полем ротора вырабатывает силу, которая, в конечном счёте, преобразует электрическую энергию в механическую и вращает вал.


Рисунок 2. Принцип действия асинхронного электродвигателяРисунок 2. Принцип действия асинхронного электродвигателя

В асинхронном электродвигателе при включении обмотки статора в сеть образуется вращающееся с частотой n1 магнитное поле. При этом в обмотке статора и ротора наводится ЭДС. Благодаря тому что обмотка ротора замкнута в ней возникает ток, который взаимодействуя с полем статора создаёт электромагнитные силы Fэм приводящие во вращение ротор двигателя.

Трансформаторы

Трансформатор – электрический аппарат, который представляет собой статическое устройство, преобразующее одну систему переменного тока в другую.

Параметры для преобразования могут быть самыми разными: ток, напряжение, частота, число фаз.

Но чаще всего в системах электроснабжения используются силовые трансформаторы, которые позволяют изменить величину тока и напряжения (при этом все остальные параметры сети остаются неизменными).

По назначению существует деление аппаратов на трансформаторы силового и специального назначения. Силовые являются одним из основных элементов систем энергоснабжения и используются при транспортировке электроэнергии для получения напряжения требуемого класса.

Специальные же очень разнообразны по своей конструкции и рабочим характеристикам (примером могут послужить сварочные, печные, испытательные трансформаторы). Отдельной их категорией являются автотрансформаторы – однообмоточные аппараты, которые способны изменять величину напряжения в минимальных пределах (когда коэффициент трансформации приближён к 1).

Принцип действия силового трансформатора


Рисунок 3. Простейший силовой однофазный трансформаторРисунок 3. Простейший силовой однофазный трансформатор

Конструктивно аппарат состоит из сердечника, выполненного из листовой электротехнической стали и обмоток 1 и 2 (первичной и вторичной), которые размещены на стержнях и электрически не связаны между собой. К обмотке 1 подключается источник питания, к обмотке 2 – нагрузка (потребитель).

За счёт явления электромагнитной индукции переменный ток i1 создаёт магнитный поток, который замыкается в сердечнике и сцепляясь с обеими обмотками наводит в них ЭДС само- и взаимоиндукции соответственно.

Читайте также:  Планирование непредвиденных обстоятельств - справочник студента

При подключении потребителя во вторичной обмотке создаётся ток i2, а на выводах – вторичное напряжение. Разница в напряжениях на вводах и выводах образуется за счёт разного количества витков в 1 и 2 обмотках.

Отношение параметров может быть любым.

По количеству фаз существует разделение на одно- и трехфазный трансформатор, по виду охлаждения – на воздушный и масляный, по форме магнитопровода – на стержневой, бронестержневой, броневой, тороидальный. Особенностью трёхфазного от однофазного трансформатора в плане его электрической схемы состоит в том, что схемы трёх отдельных систем объединены в одну.

Трансформаторы и электрические машины в целом являются одними из важнейших элементов любой системы энергоснабжения. Огромное количество технических решений и отдельных видов устройств позволяет решать самые разные задачи во всех сферах деятельности.

Источник: https://zen.yandex.ru/media/id/5cfc9e6b388e2100af05f6fe/5d08b35ac1895700b17deedf

Система генератор — двигатель или система Леонардо

Ранее наиболее доступным источником электрической энергии были сети постоянного тока неизменного напряжения. Такие системы обычно ограничивались крупными промышленными городами. Соответственно промышленность в качестве приводных электродвигателей использовала только машины постоянного тока.

Регулирование скорости вращения таких машин осуществлялось по потоку возбуждения. Это вызывало большое количество проблем, связанных с коммутацией и соответственно скорым выходом из строя коллекторного узла.

Это обуславливалось тем, что ток якоря существенно больше тока возбуждения и его регулирование (тогда в качестве регулирующего устройства применялись резисторы) вызывало большие потери мощности, а также тем, что процессы коммутации в коллекторном узле на то время были очень плохо изучены.

Поэтому большинство таких электродвигателей работало без регулирования параметров. Схема  установки:

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студента

Но с развитием промышленных технологий автоматически росли и требования к электроприводам, все больше исследований проводилось в этой области. Значительных успехов при решении проблем процессов коммутации достигли благодаря новым конструкциям обмоток дополнительных и главных полюсов. Но это не решало проблему управления двигателем постоянного тока.

Довольно большим прорывом в области данного рода электропривода стало появление на свет в 1890-е годы системы генератор – двигатель или системы Леонардо. Схема показана ниже:

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студента

В данной системе питание якоря электродвигателя производится напрямую от генератора без каких либо преобразовательных устройств. Приводной двигатель генератора вращается с постоянной скорость ω = const.

Регулирование выходного напряжения генератора производится изменением потока возбуждения генератора, при этом не возникает проблем в коммутирующем узле (коллекторе).

Это связано с тем, что коэффициент пульсаций генератор и двигателя как правило не отличаются или отличаются не существенно. Данная система позволяет регулировать напряжения якоря двигателя от 0 до Umax.

Если двигатель работает с постоянной мощностью Р = const, то регулируют только ток возбуждения машины, а если с постоянным моментом М = const, то регулируют только напряжение и ток якоря.

Включения электроприводов по такой схеме впервые обеспечило широкий диапазон и большую точность (на то время) регулирования координат при этом процессы коммутации происходят довольно надежно.

Характеристики такой системы:

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студента

Также прогресс не обходил и машины переменного тока и системы производства, распределения и преобразования электрической энергии переменного напряжения.

Усовершенствованные двигатели переменного напряжения стали активно применяться на производстве в качестве нерегулируемых электроприводов.

Они привлекали проектировщиков все больше и больше своей простотой, относительно невысокой стоимость и меньшими (в сравнении с машинами постоянного напряжения) массогабаритными показателями.

На строящихся заводах активно внедрялись системы электроснабжения переменного тока. Предприятия работающие на постоянном токе впоследствии были переведены на переменный. Впоследствии в качестве приводных двигателей для систем генератор – двигатель стали использовать машины переменного напряжения. Схема показана ниже:

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студента

В начале своего развития система генератор – двигатель не имела какого-то особенного конструктивного облика.

Установка, сборка и монтаж производились в соответствии с предоставляемыми производственными площадями. В начале 1940 – х начали появляться модульные конструкции системы генератор – двигатель.

Регулирующую аппаратуру, приводной двигатель и генератор стали объединять в общие блоки управления электроприводом.

Установка генератор – двигатель обладает следующими достоинствами:

  • Отсутствие пульсаций якорного тока;
  • Большие кратковременные перегрузки;
  • Регулирование скорости в обеих направления в любом допустимом диапазоне;
  • Рекуперация энергии в сеть при генераторном режиме работы электродвигателя;

Также есть и недостатки:

  • Очень высокие капитальные затраты;
  • Большие массогабаритные показатели;
  • Необходимость смазки вращающихся частей и их проверка;
  • При выходе из строя длительное время ремонта;
  • Очень низкий КПД, не выше 80%;

Источник: https://elenergi.ru/sistema-generator-dvigatel-ili-sistema-leonardo.html

Электродвигатели постоянного тока и области их применения

Электродвигатель постоянного тока (ДПТ) представляют собой механизм, преобразующий поступающую на него электрическую энергию в механическое вращение.

Работа агрегата базируется на явлении электромагнитной индукции — на проводник, помещенный в магнитное поле, действует сила Ампера: F = B*I*L, где L — длина проводника, I — ток, протекающий по проводнику, B — индукция магнитного поля.

Данная сила обуславливает возникновение крутящего момента, который может быть использован для неких практических целей.

Электродвигатели постоянного тока обладают следующими преимуществами:

  • Практически линейные регулировочные и механические характеристики, благодаря чему обеспечивается удобство эксплуатации.
  • Большая величина пускового момента.
  • Компактные размеры (особенно сильно выражено у двигателей на постоянных магнитах).
  • Возможность использования одного и того же механизма как в режиме двигателя, так и генератора.
  • КПД при полной нагрузке, как правило, выше на 1–2 % чем у асинхронных и синхронных машин, а при неполной нагрузке преимущество может возрастать до 15 %.

Основным недостатком данных устройств является высокая цена их изготовления. Также стоит отметить необходимость регулярного обслуживания коллекторно-щеточного узла и определенное ограничение срока эксплуатации, вызванные его износом, однако на современных моделях эти недостатки практически полностью нивелированы.

Стоит отметить, что механическая характеристика, а значит, и все эксплуатационные показатели во многом зависят от схемы подключения обмотки возбуждения. Всего их четыре:

Техническое использование переменных токов. Генераторы и электродвигатели - Справочник студента

Области применения ДПТ

Несмотря на то, что подавляющее большинство электрических сетей обеспечивают переменное напряжение, электродвигатели постоянного тока используются весьма и весьма широко.

Собственно говоря, все промышленные приводы, где требуется точная регулировка частоты вращения, реализованы именно на базе ДПТ.

Кроме того, электрические машины на постоянных магнитах благодаря своей эффективности и большой плотности мощности широко используются в оборонительной отрасли.

Впрочем, не стоит думать, что вы не сталкивались вживую с данными механизмами. Отсутствие жестких ограничений по размерам приводит к тому, что мы зачастую их не замечаем.

Например, в автомобилестроении используются только электродвигатели постоянного тока, причем, несмотря на различие в мощности, на всем грузовом транспорте и спецтехнике они запитаны от 24 вольт, в то время как на легковых автомобилях их рабочее напряжение составляет 12 вольт.

Получая энергию от аккумуляторной батареи или генератора, они отвечают за позиционирование сидений, управление зеркалами, поднятие и опускание стекол, а также поддержание в салоне заданной температуры.

Впрочем, электродвигатели постоянного тока могут и сами приводить в движение транспортные средства, и это далеко не только игрушечные автомобили-аттракционы с 12-вольтным аккумулятором.

Для того чтобы ощутить, насколько мощными могут быть эти устройства, достаточно оказаться вблизи проходящей мимо пригородной электрички, а мягкость и точность регулировки оборотов наглядно демонстрирует плавный разгон троллейбусов.

Данные электродвигатели широко применяются как в электрическом транспорте (метро, троллейбус, трамвай, пригородные электрические железные дороги, электровозы), так и в подъемных устройствах (электрические подъемные краны).

Источник: https://cable.ru/articles/id-789.php

Техническое использование переменных токов. Генераторы и электродвигатели

Около frac{1}{3} элетрической энергии, которая используется в промышленности идет на осуществление технологических процессов, таких как плавка, сварка, электронагрев, электролиз и т.д. Промышленность потребляет около 70\% производимой электрической энергии.

Дополнительный материал

Широкое распространение переменный ток получил благодаря такому своему свойству как простая трансформация (получения заданных величин сил токов и напряжений).

Генераторы переменного тока

Переменный ток научились получать ещё в 30-х годах 19 века, вместе с ᴛᴇᴍ широкое распространение он получил значительно позже.

Существенным импульсом к развитию генераторов переменного тока стало изобретение Яблочковым электрической свечи. В 1884 г.

были созданы первые трансформаторы и генераторы переменного тока, с помощью которых реализованы пробные передачи электроэнергии.

  1. индуктор — ϶то магнит или электромагнит, который соз магнитное поле;

  2. якорь — обмотка в ней по ЭДС индукции при изменении магнитного потока;

  3. контактные кольца и контактные пластинки (щетки), которые скользят по кольцам и с их помощью подводят или снимают электрический ток с вращающейся генератора.

Часть генератора, которая вращается, называется ротором. Неподвижная часть — статор. Может вращаться как якорь, так и индуктор. При ϶том в мощных генераторах чаще всœᴇᴦο якорь используют как статор, а индуктор как ротор.

Следует отметить, что так как небольшой ток, который необходим намагничивания индуктора, удобнее подводить через скользящие контакты, чем снимать через них ток значительнои̌ величины, который генерируется в якоре.

Дополнительный материал 1

Для получения больших магнитных потоков через обмотки якоря ᴇᴦο снабжают железным сердечником. Делают очень небольшой зазор между полюсами магнита и сердечником, который требуется осуществления вращения. Как индукторы, которые вызывают магнитное поле, в технических генераторах чаще всœᴇᴦο используют электромагниты. Только генераторов малой мощности применяют постоянные магниты.

Рассмотрим генератор переменного тока, который имеет вращающийся индуктор и стационарный якорь. Ротор может иметь вид цилиндра с выступами, на которые надеты катушки.

Обмотки катушек, по которым течет постоянный ток, соединены так, что на отдельных выступах имеются поочередно северные и южные полюсы электромагнитов. Количество пар полюсов: 4,6,8…

Если бы в индукторе была только одна пара полюсов, то период переменного тока был равен времени полного оборота ротора и того, чтобы получать ток с частотой 50Гц ротор должен вращаться с частотой 50 оборотов в секунду, что реализовать часто крайне сложно. При увеличении пар полюсов сокращается период тока. Он соответствует времени, ĸᴏᴛᴏᴩᴏᴇ необходимо поворота ротора на ту часть окружности, которую занимает одна пара полюсов.

В прочем, ротор может не иметь выступов, а быть гладким цилиндром на внешней поверхности которого, в пазах уложена обмотка. В случае быстрого вращения ϶то бывает выгоднее. Выступы в роторе, создают воздушные вихри, из—за чᴇᴦο растут механические потери. Следует отметить, что так поступают при конструировании паровых турбин, которые вращаются с частотой 1500 — 3000 оборотов в минуту.

Форма полюсных наконечников рассчитывается так, чтобы ЭДС индукции изменялась по гармоническому закону.

Понятие 1

Статор генератора — железное кольцо, в пазах которого находятся обмотки якоря. С целью потери на токи Фуко были минимальными ϶то кольцо делают ᴎɜ отдельных изолированных друг от друга тонких листков.

Электродвигатели

Электродвигатели преобразуют электрическую энергию в механическую работу. Они основаны на использовании силы Ампера, действующей на проводник с током в магнитном поле. Первый электродвигатель такого рода был создан в 1839 г. Б.С. Якоби.

Для понимания основы процессов, которые происходят в электродвигателях можно рассмотреть двигатель постоянного тока (рис.1).

  • Рисунок 1.

Источник постояннои̌ ЭДС — U_0 включен в цепь. Прямолинейный проводник ( DC ) может скользить вдоль проводников FG и AK . Магнитное поле, в котором находится цепь, перпендикулярно плоскости чертежа на нас. Когда по проводнику течет ток, то на нᴇᴦο действует сила Ампера равная:

  1. Под действием силы проводник перемещается и совершает механическую работу. При перемещении проводника на расстояние dx , эта работа равна:
  2. Отсюда следует, что, мощность можно представить как:
  3. где v=frac{dx}{dt} — скорость проводника.
  4. При движении проводника по ЭДС индукции, которая направлена против сторонней ЭДС, которая вызывает токи:
  5. При ϶том мощность сторонних ЭДС равна:

Сравним (5) и (3), сделаем вывод о том, что вся развиваемая электродвигателем мощность обеспечивается источником сторонних ЭДС. Помимо полезнои̌ мощности (3) источник ЭДС развивает мощность, которая идет на выделение тепла на сопротивлении проводов, по которым идет ток и внутреннем сопротивлении источника. Из правил Кирхгофа можно составить баланс напряжений замкнутого контура вида:

  • где R — суммарное сопротивление. Умножим обе уравнения (6) на I , получим:
  • Обычно формулу (7) записывают в виде:
  • Из формулы (8) очевидно, что мощность источника ( P_I ) расходуется на выделение тепла (Джоуля — Ленца) и работу электродвигателя с мощностью P .
  • Для переменного тока расчет баланса энергий сложнее, но суть такого рода же.

Дополнительный материал 2

Для обеспечения непрерывности двигателя создают периодический режим . К примеру, изменяют периодически индукцию.

Пример 1

Задание: Вычислите частоту переменного тока, который соз генератор, ротор которого имеет 12 пар полюсов и вращается со скоростью 1500 оборотов в минуту. Сколько раз в секунду изменяет свое направление при ϶том ток?

  1. Решение:
  2. Если частота вращения 1500 frac{оборотов}{мин} переведем её СИ , получим, что ротор вращается с частотой:
  3. Если ротор имеет 12 пар полюсов, то частота тока составит:

[frac{1500}{60}=25left(frac{оборотов}{с}
ight).] [
u =12cdot 25=300 left(Гц
ight).]

Ответ: u =300 Гц . Ток изменяет свое направление 600 раз, так как перемена направления происходит 2 раза за период.

Пример 2

  • Задание: Объясните, почему статор генератора переменного тока собирают ᴎɜ отдельных стальных листков, а статор генератора постоянного тока изготавливают ᴎɜ массивнои̌ стальнои̌ или чугуннои̌ отливки?
  • Решение:
  • Статор генератора переменного тока содержит якорь, в котором индуцируется переменный ток, который вызывает существенные потери энергии в массивных проводниках из-за возникновения токов ФукоВажно сказать, что для уменьшения таких потерь статор собирают ᴎɜ пластин, которые разделяют изолятором.

В статоре генератора постоянного тока находится индуктор, на внутренней поверхности ᴇᴦο находятся выступы с обмотками, которые создают в машине магнитное поле. Выпрямление тока происходит на коллекторе машины, в каждой секции индуцируется переменный ток, и ᴎɜ отдельных пластин генератора постоянного тока делают сердечник якоря во избегания сильного нагрева токам Фуко.

Источник: http://referatwork.ru/info-lections-55/tech/view/2134_tehnicheskoe_ispol_zovanie_peremennyh_tokov_generatory_i_elektrodvigateli

Ссылка на основную публикацию