Перпендикуляр и наклонные — справочник студента

Если через какую-нибудь точку, взятую вне прямой, провести прямую, перпендикулярную к ней, то отрезок от данной точки до прямой для краткости называют одним словом перпендикуляр.

Отрезок СО — перпендикуляр к прямой АВ. Точка О называется основанием перпендикуляра СО (рис).

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Перпендикуляр и наклонные - Справочник студента

Если прямая, проведённая через данную точку, пересекает другую прямую, но не перпендикулярна к ней, то отрезок её от данной точки до точки пересечения с другой прямой называют наклонной к этой прямой.

Отрезок ВС — наклонная к прямой АО. Точка С называется основанием наклонной (рис.).

Если из концов какого-нибудь отрезка опустим перпендикуляры на произвольную прямую, то отрезок прямой, заключённый между основаниями перпендикуляров, называется проекцией отрезка на эту прямую.

Отрезок А’В’ — проекция отрезка АВ на ЕС. Отрезок ОМ’ — также называется проекцией отрезка ОМ на ЕС.

Перпендикуляр и наклонные - Справочник студента

Проекцией отрезка КР, перпендикулярного к ЕС, будет точка К’ (рис.).

2. Свойства перпендикуляра и наклонных

Теорема 1. Перпендикуляр, проведённый из какой-нибудь точки к прямой, меньше всякой наклонной, проведённой из той же точки к этой прямой.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Сила и плотность тока. линии тока - справочник студента

Оценим за полчаса!

Отрезок АС (рис.) является перпендикуляром к прямой ОВ, а АМ — одна из наклонных, проведённых из точки А к прямой ОВ. Требуется доказать, что АМ > АС.

Перпендикуляр и наклонные - Справочник студента

В ΔМАС отрезок АМ является гипотенузой, а гипотенуза больше каждого из катетов этого треугольника. Следовательно, АМ > АС. Так как наклонная АМ взята нами произвольно, то можно утверждать, что всякая наклонная к прямой больше перпендикуляра к этой прямой (а перпендикуляр короче всякой наклонной), если они проведены к ней из одной и той же точки.

Верно и обратное утверждение, а именно: если отрезок АС (рис.) меньше всякого другого отрезка, соединяющего точку АС любой точкой прямой ОВ, то он является перпендикуляром к ОВ. В самом деле, отрезок АС не может быть наклонной к ОВ, так как тогда он не был бы самым коротким из отрезков, соединяющих точку А с точками прямой ОВ. Значит, он может быть только перпендикуляром к ОВ.

Длина перпендикуляра, опущенного из данной точки на прямую, принимается за расстояние от данной точки до этой прямой.

Теорема 2. Если две наклонные, проведённые к прямой из одной и той же точки, равны, то равны и их проекции .

Пусть ВА и ВС — наклонные, проведённые из точки В к прямой АС (рис.), причём АВ = ВС. Нужно доказать, что равны и их проекции.

Перпендикуляр и наклонные - Справочник студента

Для доказательства опустим из точки В перпендикуляр ВО на АС. Тогда АО и ОС будут проекции наклонных АВ и ВС на прямую АС. Треугольник АВС равнобедренный по условию теоремы. ВО — высота этого треугольника. Но высота в равнобедренном треугольнике, проведённая к основанию, является в то же время и медианой этого треугольника.

Поэтому АО = ОС.

Теорема 3 (обратная). Если две наклонные, проведённые к прямой из одной и той же точки, имеют равные проекции, то они равны между собой.

Пусть АС и СВ — наклонные к прямой АВ (рис.). СО ⊥ АВ и АО = ОВ.

Требуется доказать, что АС = ВС.

Перпендикуляр и наклонные - Справочник студента

В прямоугольных треугольниках АОС и ВОС катеты АО и ОВ равны. СО — общий катет этих треугольников. Следовательно, ΔAOС = ΔВОС. Из равенcтва треугольников вытекает, что АС = ВС.

Теорема 4. Если из одной и той же точки проведены к прямой две наклонные, то та из них больше, которая имеет большую проекцию на эту прямую.

Пусть АВ и ВС — наклонные к прямой АО; ВО ⊥ АО и АО>СО. Требуется доказать, что АВ > ВС.

1) Наклонные расположены по одну сторону перпендикуляра.

Угол АСЕ внешний по отношению к прямоугольному треугольнику СОВ (рис.), а поэтому ∠АСВ > ∠СОВ, т. е. он тупой. Отсюда следует, что АВ > СВ.

Перпендикуляр и наклонные - Справочник студента

2) Наклонные расположены по обе стороны перпендикуляра. Для доказательства отложим на АО от точки О отрезок ОК = ОС и соединим точку К с точкой В (рис.). Тогда по теореме 3 имеем: ВК = ВС, но АВ > ВК, следовательно, АВ > ВС, т. е. теорема справедлива и в этом случае.

Теорема 5 (обратная). Если из одной и той же точки проведены к прямой две наклонные, то большая наклонная имеет и большую проекцию на эту прямую.

Пусть КС и ВС — наклонные к прямой КВ (рис.), СО ⊥ КВ и КС > ВС. Требуется доказать, что КО > ОВ.

Перпендикуляр и наклонные - Справочник студента

  • Между отрезками КО и ОВ может быть только одно из трёх соотношений:
  • 1) КО < ОВ, 2) КО = ОВ,
  • 3) КО > ОВ.
  • КО не может быть меньше ОВ, так как тогда по теореме 4 наклонная КС была бы меньше наклонной ВС, а это противоречит условию теоремы.
  • Точно так же КО не может равняться ОВ, так как в этом случае по теореме 3 КС = ВС, что также противоречит условию теоремы.
  • Следовательно, остаётся верным только последнее соотношение, а именно, что КО > ОВ.

Источник: http://razdupli.ru/teor/44_perpendikulyar-i-naklonnaya-k-pryamoj.php

Урок 10. перпендикуляр и наклонные — Геометрия — 10 класс — Российская электронная школа

  • Геометрия, 10 класс
  • Урок №10. Перпендикуляр и наклонные
  • Перечень вопросов, рассматриваемых в теме.
  • Определение перпендикуляра, наклонной и проекции наклонной на плоскость;
  • Доказательство теоремы о трех перпендикулярах;
  • Определение угла между прямой и плоскостью.
  1. Глоссарий по теме
  2. Теорема о трех перпендикулярах: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.

  3. Обратная теорема: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции.

  4. Определение: углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.
  5. Основная литература:

Атанасян Л. С., Бутузов В. Ф. Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.

Дополнительная литература:

Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения

Рассмотрим плоскость α и точку А, не лежащую в этой плоскости (рис. 1). Проведем через точку А прямую, перпендикулярную к плоскости α, и обозначим буквой Н точку пересечения этой прямой с плоскостью α.

Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости α, а точка Н — основанием перпендикуляра. Отметим в плоскости α какую-нибудь точку М, отличную от Н, и проведем отрезок AM.

Он называется наклонной, проведенной из точки А к плоскости α, а точка М – основанием наклонной. Отрезок НМ называется проекцией наклонной на плоскость α.

Перпендикуляр и наклонные - Справочник студента

(Рис. 1)

Рассмотрим прямоугольный треугольник АМН. Сторона АН — катет, а сторона AM — гипотенуза, поэтому АН < AM. Поэтому перпендикуляр, проведенный из данной точки к плоскости, меньше любой наклонной, проведенной из той же точки к этой плоскости.

Следовательно, из всех расстояний от точки А до различных точек плоскости α наименьшим является расстояние до точки Н. Это расстояние, т. е. длина перпендикуляра, проведенного из точки А к плоскости α, называется расстоянием от точки А до плоскости α.

Стоит отметить, что в случае двух параллельных плоскостей, расстоянием между ними будет расстояние от произвольной точки одной плоскости до другой плоскости. Например, все точки потолка находятся на одинаковом расстоянии от пола.

Если же прямая параллельна плоскости, то все точки прямой равноудалены от этой плоскости. В этом случае расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью.

Например, все точки прямой b равноудалены от потолка комнаты.

Если мы имеем дело со скрещивающимися прямыми, то расстоянием между ними будет расстояние между одной из этих прямых и плоскостью, проходящей через другую прямую параллельно первой.

Сформулируем теорему о трех перпендикулярах: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.

(Рис. 2)

На рисунке 2: АН — перпендикуляр к плоскости α, AM — наклонная, а — прямая, проведенная в плоскости α через точку М перпендикулярно к проекции наклонной НМ. Докажем, что прямая а перпендикулярна наклонной AM.

Рассмотрим плоскость АМН. Прямая а перпендикулярна к НМ по условию. Так как прямая а, лежит в плоскости α, а эта плоскость перпендикулярна отрезку AH, то прямая а перпендикулярна к этой плоскости. Отсюда следует, что прямая а перпендикулярна к любой прямой, лежащей в плоскости АМН, в частности прямая а перпендикулярна отрезку АМ. Теорема доказана.

Эта теорема называется теоремой о трех перпендикулярах, так как в ней говорится о связи между тремя перпендикулярами АН, НМ и AM.

Справедлива также обратная теорема: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции.

Введем теперь понятие проекции произвольной фигуры на плоскость. Проекцией точки на плоскость называется основание перпендикуляра, проведенного из этой точки к плоскости, если точка не лежит в плоскости, и сама точка, если она лежит в плоскости.

Обозначим буквой F какую-нибудь фигуру в пространстве. Если мы построим проекции всех точек этой фигуры на данную плоскость, то получим фигуру F1, которая называется проекцией фигуры F на данную плоскость (рис. 3).

Перпендикуляр и наклонные - Справочник студента

(Рис. 3)

Докажем теперь, что проекцией прямой на плоскость, не перпендикулярную к этой прямой, является прямая (рис. 4).

Данную плоскость обозначим буквой α. Произвольную прямую, не перпендикулярную к плоскости, обозначим буквой а. Из какой-нибудь точки М прямой а проведем перпендикуляр МН к плоскости α и рассмотрим плоскость β, проходящую через прямую a и перпендикуляр МН. Плоскости α и β пересекаются по некоторой прямой а1.

Докажем, что эта прямая и является проекцией прямой а на плоскость α. В самом деле, возьмем произвольную точку М1 прямой а и проведем в плоскости β прямую М1Н1, параллельную прямой МН.

Так как отрезок MH перпендикуляр к плоскости α и отрезок MH параллелен М1Н1, то отрезок М1Н1 тоже перпендикулярен плоскости α.

Этим мы доказали, что проекция произвольной точки прямой а лежит на прямой а1.

Аналогично доказывается, что любая точка прямой а1 является проекцией некоторой точки прямой а. Следовательно, прямая а1 — проекция прямой а на плоскость α. Что и требовалось доказать.

  • (Рис. 4)
  • Теперь введем понятие угла между прямой и плоскостью.
  • Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.
  • Примеры и разбор решения заданий тренировочного модуля

Пример 1. Докажем, что угол между φ0 между данной прямой AM и плоскостью α является наименьшим из всех углов φ, которые данная прямая образует с прямыми, проведенными в плоскости α через точку А.

Перпендикуляр и наклонные - Справочник студента

(Рис. 5)

Обозначим буквой Н основание перпендикуляра (рис. 5), проведенного из точки М к плоскости α.

  1. Рассмотрим произвольную прямую р в плоскости α, проходящую через точку А и отличную от прямой АН.
  2. Угол между прямыми AM и р обозначим через φ.
  3. Докажем, что φ больше чем φ0.

Из точки М проведем перпендикуляр MN к прямой р. Если точка N совпадает с точкой А, то φ равняется 90 градусам и поэтому φ больше чем φ 0. Рассмотрим случай, когда точки А и N не совпадают. Отрезок AM — общая гипотенуза прямоугольных

треугольников ANM и АНМ, поэтому sinφ=MN/AM

Так как наклонная MN больше, чем перпендикуляр МН, то синус угла φ больше, чем синус угла φ0. Поэтому угол φ больше, чем угол φ0. Что и требовалось доказать.

Тестовый вопрос №7. Прямая AM перпендикулярна плоскости равностороннего треугольника ABC, точка H середина стороны BC. Найдите угол между прямой MH и плоскостью ABC, если AM = a, HB = a.

Решение. Искомый угол – MHA.

Рассмотрим треугольник ABC. Он равносторонний. Это означает, что его медиана так же является высотой и биссектрисой. Так как HB = a, следовательно, любая сторона треугольника имеет длину 2a. Рассмотрим треугольник AHB.

Он прямоугольный, т.к. AH медиана и высота. По теореме Пифагора вычислим длину стороны AH: Перпендикуляр и наклонные - Справочник студента.

Далее рассмотрим треугольник MHA, он прямоугольный, т.к. MA перпендикулярна плоскости ABC. Зная это мы можем выразить тангенс искомого угла: .. Отсюда делаем вывод, что искомый угол равен 30 градусов.

Ответ: ∠MHA = 30˚.

Тестовый вопрос №8. Из точки O к плоскости α проведена наклонная, длина которой равна 17 см, проекция наклонной равна 15 см. На каком расстоянии от плоскости находится точка O?

Решение. Нарисуем рисунок. OH – перпендикуляр, OM – наклонная, длина которой 17 см, MH – проекция наклонной, длина которой 15 см.

Треугольник OHM – прямоугольный, т.к. OH – перпендикуляр. Поэтому OH – искомое расстояние. Найдем его по теореме Пифагора: Перпендикуляр и наклонные - Справочник студента сантиметров.

Ответ: 8 сантиметров.

Источник: https://resh.edu.ru/subject/lesson/6127/conspect/

Презентация на тему "Перпендикуляр и наклонная" в формате powerpoint

Презентация на тему «Перпендикуляр и наклонная» по геометрии в формате powerpoint. В презентации для школьников 10 класса дается понятие ортогональной проекции, перпендикуляра и наклонной, угла между перпендикуляром  наклонной, также в презентации доказывается теорема о трех перпендикулярах. Автор презентации: учитель Аверкина Т.П.

Перпендикуляр и наклонные - Справочник студента

Фрагменты из презентации

На одном из предыдущих уроков вы познакомились с понятием проекции точки на данную плоскость параллельно данной прямой.

На этом уроке вы продолжите изучение прямых и плоскостей; узнаете, как находится угол между прямой и плоскостью. Вы познакомитесь с понятием ортогональной проекции на плоскость и рассмотрите ее свойства. На уроке будут даны определения расстояния от точки до плоскости и от точки до прямой, угла между прямой и плоскостью. Будет доказана знаменитая теорема о трех перпендикулярах.

Ортогональная проекция

  • Ортогональной проекцией точки А на данную плоскость называется проекция точки на эту плоскость параллельно прямой, перпендикулярной этой плоскости. Ортогональная проекция фигуры на данную плоскость p состоит из ортогональных проекций на плоскость p всех точек этой фигуры.
  • Ортогональная проекция часто используется для изображения пространственных тел на плоскости, особенно в технических чертежах. Она дает более реалистическое изображение, чем произвольная параллельная проекция, особенно круглых тел.

Перпендикуляр и наклонная

  • Пусть через точку А, не принадлежащую плоскости p, проведена прямая, перпендикулярная этой плоскости и пересекающая ее в точке В. Тогда отрезок АВ называется перпендикуляром, опущенным из точки А на эту плоскость, а сама точка В — основанием этого перпендикуляра. Любой отрезок АС, где С — произвольная точка плоскости p, отличная от В, называется наклонной к этой плоскости.
  • Заметим, что точка В в этом определении является ортогональной проекцией точки А, а отрезок АС — ортогональной проекцией наклонной AВ. Ортогональные проекции обладают всеми свойствами обычных параллельных проекций, но имеют и ряд новых свойств.

Свойства ортогональной проекции

Пусть из одной точки к плоскости проведены перпендикуляр и несколько наклонных. Тогда справедливы следующие утверждения.

  1. Любая наклонная длиннее как перпендикуляра, так и ортогональной проекции наклонной на эту плоскость.
  2. Равные наклонные имеют и равные ортогональные проекции, и наоборот, наклонные, имеющие равные проекции, также равны.
  3. Одна наклонная длиннее другой тогда и только тогда, когда ортогональная проекция первой наклонной длиннее ортогональной проекции второй наклонной.

Доказательство

  • Пусть из точки А к плоскости p проведены перпендикуляр АВ и две наклонные АС и AD; тогда отрезки ВС и BD — ортогональные проекции этих отрезков на плоскость p.
  • Докажем первое утверждение: любая наклонная длиннее как перпендикуляра, так и ортогональной проекции наклонной на эту плоскость. Рассмотрим, например, наклонную AС и треугольник ABC, образованный перпендикуляром AВ, этой наклонной AС, и ее ортогональной проекцией ВС. Этот треугольник прямоугольный с прямым углом в вершине В и гипотенузой AС, которая, как мы знаем из планиметрии, длиннее каждого из катетов, т.е. и перпендикуляра AВ, и проекции ВС.
  • Теперь докажем второе утверждение, а именно: равные наклонные имеют и равные ортогональные проекции, и наоборот, наклонные, имеющие равные проекции, также равны.
  • Рассмотрим прямоугольные треугольники AВС и ABD. Они имеют общий катет AВ. Если наклонные AС и AD равны, то прямоугольные треугольники AВС и AВD равны по катету и гипотенузе, и тогда BC=BD. Обратно, если равны проекции ВС и BD, то эти же треугольники равны по двум катетам, и тогда у них равны и гипотенузы AС и AD.
  • Докажем третье утверждение: одна наклонная длиннее другой тогда и только тогда, когда ортогональная проекция первой наклонной длиннее ортогональной проекции второй наклонной. Пусть, например, ВС > BD. Отложим на отрезке ВС точку Е такую, что BD=BE. Тогда и AD=AE.    В треугольнике АСЕ  угол AEC тупой и поэтому больше угла ACE, следовательно, сторона АС больше стороны АЕ, равной AD.
  • Обратно, пусть АС > AD. Возможны три случая:
    • a) BC=BD;
    • б) ВС < BD;
    • с) ВС > BD.
  • Если BC=BD, то по доказанному выше в пункте 2, AC=AD, что противоречит условию. Если ВС < BD, как мы только что доказали, АС < AD, что опять противоречит условию. Остается третья возможность: ВС > BD. Теорема доказана.

Расстояние от точки до плоскости

Расстоянием от точки до плоскости (не проходящей через эту точку) называется длина перпендикуляра, опущенного из точки на эту плоскость. Из теоремы о свойствах ортогональной проекции следует, что расстояние от точки А до плоскости pi равно наименьшему расстоянию от точки А до точек этой плоскости.

Теорема о трех перпендикулярах

Прямая, лежащая в плоскости, перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна ее ортогональной проекции.

Доказательство

Пусть даны плоскость pi, перпендикуляр АВ на эту плоскость, наклонная АС, и прямая m в плоскости pi. Нам надо доказать два взаимно обратных утверждения. Первое утверждение: если прямая m перпендикулярна наклонной АС, то она перпендикулярна и ее ортогональной проекции ВС. И обратно: если прямая m перпендикулярна ортогональной проекции ВС, то она перпендикулярна и наклонной АС.

Угол между наклонной и плоскостью

Пусть даны плоскость и наклонная прямая. Углом между прямой и плоскостью называется угол между прямой и ее ортогональной проекцией на эту плоскость. Если прямая параллельна плоскости, то угол между ней и плоскостью считается равным нулю. Если прямая перпендикулярна плоскости, то угол между ней и плоскостью прямой, т. е. равен 90°.

Источник: http://fevt.ru/load/prezentacii_powerpoint/perpendikuljar_prezentacija/110-1-0-979

Практическое занятие. Тема: Перпендикуляр и наклонная

  • Практическое занятие
  • Тема: Перпендикуляр и наклонная.
  • Цели:
  • Образовательная: продолжить формирование у студентов умений решать задачи по теме «Перпендикуляр и наклонная».
  • Воспитательная: воспитание самостоятельности, творческого подхода к решению задач.
  • Развивающая: развитие логического мышления, навыков сравнительного анализа.
  • Оборудование: доска, компьютер, проектор, экран, индивидуальные карточки-задания, записи на доске.
  • Использование элементов педагогических технологий:
  • 1. сотрудничества;
  • 2. здоровье сберегающих (чередование видов деятельности);
  • 3. информационно-коммуникационных;
  • 4. развивающих;

5. личностно-ориентированных.

  1. Результативность:
  2. формирование компетенций: ценностно-смысловой, учебно-познавательной, коммуникативной, личного самосовершенствования.
  3. План занятия.
  4. 1) Подготовительный этап.
  5. Повторение опорных знаний.
  6. 1) Проверка усвоения пройденного материала фронтально (или индивидуально) по следующим вопросам (на экран проектируются вопросы, на которые студенты отвечают устно).

1. Дайте определение прямой, перпендикулярной плоскости.

2. Какая прямая называется наклонной к плоскости?

3. Что называется проекцией наклонной на плоскость?

4. Как формулируется теорема о трех перпендикулярах?

5.Как определяется угол между прямой и плоскостью?

2) Теоретический этап.

а) К плоскости α проведена наклонная, длина которой равна 13 см, проекция наклонной равна 5 см. На каком расстоянии от плоскости находится точка, из которой проведена наклонная?

б) Расстояние от точки D до каждой из вершин правильного треугольника ABC равно 15 см. Найдите расстояние от точки D до плоскости ABC, если АВ = 10 см.

  • 3) Практический этап.
  • Самостоятельное применение умений и знаний.
  • Провести самостоятельную работу в 15 вариантах. (Приложение 1)
  • Список литературы.

1. Алимов Ш.А. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углубленный уровни).10—11 клас­сы. — М., 2014.

2. Богомолов Н.В. Математика: учебник для прикладного бакалавриата / Н.В. Богомолов, П.И. Самойленко. – 5-е изд., перераб. и доп. – М.: Издательство Юрайт, 2014.

  1. Приложение 1.
  2. Варианты для самостоятельной работы.
  3. Вариант 1

1)Точка А не лежит в плоскости, а точка Е — принадлежит этой плоскости. АЕ = 13 cм, проекция этого отрезка на плоскость равна 5см. Каково расстояние от точки А до данной плоскости?

2)Равнобедренный треугольник ABE находится в плоскости α. Боковые стороны треугольника ABE равны по 10 см, а сторона основания AE=16 см. К этой плоскости проведены перпендикуляр CB, который равен 6 см, и наклонные CA и CE. Вычислите расстояние от точки C до стороны треугольника AE.

3) Через вершину А прямоугольного треугольника ABC с прямым углом С проведена прямая AD, перпендикулярная к плоскости треугольника, а) Докажите, что треугольник CBD прямоугольный, б) Найдите BD, если ВС = 4, DC =6.

Вариант 2

1) Прямая a пересекает плоскость β в точке C, и образует с плоскостью угол 30°. P∈a, точка R — проекция точки P на плоскость β. PR=7 см. Найди PC.

2)Прямоугольный треугольник MBE (∢M=90°) находится в плоскости α.  BE=13 см, а ME=12 см. К этой плоскости проведён перпендикуляр CB длиной 7 см. Вычисли расстояние от точки C до стороны треугольника ME.

3)Отрезок AD перпендикулярен к плоскости равнобедренного треугольника ABC. Известно, что АВ =АС = 5 см, ВС= 6 см, AD = 12 см. Найдите расстояния от концов отрезка AD до прямой ВС.

Вариант 3

1) К плоскости α проведена наклонная, длина которой равна 10 см, проекция наклонной равна 6 см. На каком расстоянии от плоскости находится точка, из которой проведена наклонная?

2) Точка K расположена в расстоянии 8 cm от плоскости прямоугольника ABCD и в равных расстояниях от вершин прямоугольника.

Рассчитай, на каком расстоянии от вершин прямоугольника расположена точка K, если длина сторон прямоугольника 24 cm и 18 cm.

3) Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскости прямоугольника. Известно, что KD = 6 см, КВ = 7 см, КС=9 см. Найдите: а) расстояние от точки К до плоскости прямоугольника ABCD;

Вариант 4

1) К плоскости α проведена наклонная AB (A∈α). Длина наклонной равна 18 см, наклонная с плоскостью образует угол 60°. Вычисли, на каком расстоянии от плоскости находится точка B.

2) Расстояние от точки G до каждой из вершин правильного треугольника ABC равно 12 см. Найдите расстояние от точки G до плоскости ABC, если АВ = 9 см.

3) Прямая ОК перпендикулярна к плоскости ромба ABCD, диагонали которого пересекаются в точке О. Найдите это расстояние, если ОК = 4,5 дм, АС = 6 дм, BD = 8 дм.

Вариант 5

1) Прямая  m пересекает плоскость ß в точке A, и образует с плоскостью угол 60°,P∈ m,  точка R — проекция точки P на плоскость β. PR=9 см. Найди PА.

2)Наклонная AD с плоскостью α образует угол 30˚, а наклонная DC с плоскостью α образует угол 45˚. Длина перпендикуляра DB равна 7 см. Вычисли длины обеих наклонных.

3) Через вершину В квадрата ABCD проведена прямая BМ, перпендикулярная к его плоскости. Найдите расстояния от точки М до прямых, содержащих стороны и диагонали квадрата, если BМ = 10 дм, АВ = 5 дм.

Вариант 6

1) Длина отрезка VB равна 10 м. Он пересекает плоскость в точке O. Расстояние от концов отрезка до плоскости соответственно равны 2 м и 3 м. Найди острый угол, который образует отрезок VB с плоскостью.

2) Один из катетов прямоугольного треугольника ABC равен 5, а острый угол, прилежащий к этому катету, равен 60˚. Через вершину прямого угла С проведена прямая CD, перпендикулярная к плоскости этого треугольника, CD = 8. Найдите расстояние от точки D до прямой АВ.

3) Из точки А, удаленной от плоскости ß на расстояние 5 см, проведены к этой плоскости наклонные АВ и АС под углом 30° к плоскости. Их проекции на плоскость ß образуют угол в 120°. Найдите ВС.

Вариант 7

1) Проекции наклонных AD и DC на плоскости α равны соответственно 4 см и 10 см, а угол между ними равен  60°. Вычисли расстояние между концами проекций наклонных.

2) Точка M расположена в расстоянии 10 cm от плоскости прямоугольника ABCD и в равных расстояниях от вершин прямоугольника.

Рассчитай, на каком расстоянии от вершин прямоугольника расположена точка M, если длина сторон прямоугольника 12 cm и 5 cm.

3) Один конец данного отрезка лежит в плоскости α, а другой находится от нее на расстоянии 11 см. Найдите расстояние от середины данного отрезка до плоскости α.

Вариант 8

1) К плоскости α проведена наклонная СD (C∈α). Длина наклонной равна 16 см, наклонная с плоскостью образует угол 30°. Вычисли, на каком расстоянии от плоскости находится точка D.

2) Через вершину В квадрата ABCD проведена прямая BF, перпендикулярная к его плоскости. Найдите расстояния от точки F до прямых, содержащих стороны и диагонали квадрата, если BF = 8 дм, АВ = 4 дм.

3) Отрезок КD перпендикулярен к плоскости равнобедренного треугольника КРЕ. Известно, что КР =КЕ = 4 см, РЕ= 8 см, КD = 14 см. Найдите расстояния от концов отрезка КD до прямой РЕ.

Вариант 9

1) Наклонная АМ, проведенная из точки А к данной плоскости, равна 7см. Чему равна проекция этой наклонной на плоскость, если угол между прямой АМ и данной плоскостью равен 30°?

2) Расстояние от точки N до каждой из вершин правильного треугольника ABC равно 5 см. Найдите расстояние от точки N до плоскости ABC, если АВ = 8 см.

3) Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскости прямоугольника. Известно, что KD = 6 см, КВ = 7 см, КС=9 см. Найдите расстояние между прямыми АК и CD.

Вариант 10

1) Наклонная АМ, проведенная из точки А к данной плоскости, равна 15. Чему равна проекция этой наклонной на плоскость, если угол между прямой АМ и данной плоскостью равен 60°.

2) Прямая BD перпендикулярна к плоскости треугольника ABC. Известно, что BD = 9 см, АС=10 см, ВС = ВА = 13 см. Найдите расстояние от точки D до прямой AC

3) Точка М расположена в расстоянии 10 см. от плоскости прямоугольника ABCD и в равных расстояниях от вершин прямоугольника.

Рассчитай, на каком расстоянии от верши прямоугольника расположена точка M, если длина сторон прямоугольника 16 см и 10 см.

Вариант 11

1) Под углом φ к плоскости α проведена наклонная. Найдите φ, если известно, что проекция наклонной вдвое меньше самой наклонной.

2) Через вершину прямого угла С равнобедренного прямоугольного треугольника ABC проведена прямая СМ, перпендикулярная к его плоскости. Найдите расстояние от точки М до прямой АВ, если АС = 4 см, а СМ = 2 √7 см.

3) Прямая BD перпендикулярна к плоскости треугольника ABC. Известно, что BD = 9 см, АС=10 см, ВС = ВА = 13 см. Найдите площадь треугольника ACD.

  • Вариант12
  • 1) Проекции наклонных AМ и МC на плоскость α равны соответственно 5 см и 8 см, а угол между ними равен  45°.
  • Вычисли расстояние между концами проекций наклонных
  • 2) Прямая ОК перпендикулярна к плоскости ромба ABCD, диагонали которого пересекаются в точке О. Докажите, что расстояния от точки К до всех прямых, содержащих стороны ромба, равны

3) Через вершину М квадрата MNOR проведена прямая MF, перпендикулярная к его плоскости. Найдите расстояния от точки F до прямых, содержащих стороны и диагонали квадрата, если MF = 12 дм, MN = 6 дм.

Вариант 13

1) Один конец данного отрезка лежит в плоскости ß, а другой находится от нее на расстоянии 12 см. Найдите расстояние от середины данного отрезка до плоскости ß.

2) Точка P расположена в расстоянии 12 см от плоскости прямоугольника ABCD и в равных расстояниях от вершин прямоугольника.

Рассчитай, на каком расстоянии от вершин прямоугольника расположена точка P, если длина сторон прямоугольника 8 см и 6 см.

3) Проекции наклонных MN и MK на плоскости α равны соответственно 8 см и 12 см, а угол между ними равен  30°. Вычисли расстояние между концами проекций наклонных.

Вариант 14

1) Наклонная АМ, проведенная из точки А к данной плоскости, равна 8см. Чему равна проекция этой наклонной на плоскость, если угол между прямой АМ и данной плоскостью равен 45°.

2) Через вершину В ромба ABCD проведена прямая ВМ, перпендикулярная к его плоскости. Найдите расстояния от точки М до прямых, содержащих стороны ромба, если AB = 25 см, ∠BAD = 60°, BM =12,5 см.

3) Из точки А, не принадлежащей плоскости α, проведены к этой плоскости перпендикуляр АО и две наклонные АВ и АС. Известно, что ∠OAB= ∠BAС = 60°, АО = 1,5 см. Найдите расстояние между основаниями наклонных.

Вариант 15

1) Концы отрезка отстоят от плоскости α на расстояниях 3 см и 7 см. Найдите расстояние от середины отрезка до плоскости α.

2) Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 см. Найдите расстояние от точки М до плоскости ABC, если АВ = 6 см.

3) Наклонная НМ, проведенная из точки Н к данной плоскости, равна 9см. Чему равна проекция этой наклонной на плоскость, если угол между прямой НМ и данной плоскостью равен 45°?

Источник: https://kopilkaurokov.ru/matematika/uroki/praktichieskoiezaniatiietiemapierpiendikuliarinaklonnaia

Ссылка на основную публикацию