Эффект холла — справочник студента

Американский ученый Эдвин Холл в 1879 году обнаружил, что в помещенном в магнитное поле  проводнике возникает разность потенциалов в направлении, перпендикулярном току I и вектору магнитной индукции В. Данный эффект возник вследствие воздействия силы Лоренца на заряды, движущиеся в этом проводнике.

На рисунке ниже изображена тонкая пластина, пронизываемая магнитным полем с индукцией В, направленным перпендикулярно чертежу, причем линии индукции направлены от зрителя и уходят за чертеж (показаны крестиком):

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Эффект Холла - Справочник студента

За направление тока I принимают направление движения положительных зарядов, для которых направление вектора скорости V и тока I совпадают (рисунок а)). У зарядов отрицательных векторы тока и скорости направлены в противоположные стороны (рисунок б)).  Применив правило левой руки легко убедиться в том, что сила Лоренца в обоих случаях будет направлена к верхней (на рисунке) грани пластины.

  • Эффект Холла - Справочник студента
  • Эффект Холла наблюдается у полупроводников и металлов. У полупроводников n – типа, а также у металлов, где носителями зарядов являются электроны, на верхней части пластины будет накапливаться избыточный отрицательный заряд, а нижняя грань будет испытывать недостаток электронов и зарядится положительно, как показано на рисунке ниже (а)):
  • Результатом этого становится возникновение разницы потенциалов между верхней и нижней гранями проводника Uн.

У полупроводников p – типа, носителями заряда которых являются положительно заряженные дырки, верхняя грань (рисунок выше) приобретает в магнитном поле положительный заряд, а нижняя – отрицательный (рисунок б)).

При исследовании распределения зарядов можно определить характер проводимости (электронный или дырочный) полупроводника. Также в процессе изучения эффекта Холла было обнаружено, что некоторые металлы обладают смешанной электронно – дырочной проводимостью.

У таких металлов, из — за того, что дырки обладают большей подвижностью, распределение зарядов между верхней и нижней гранями будет такое же, как и у полупроводников p – типа.

  1. Поскольку вектор тока I перпендикулярен скорости V перемещения зарядов и магнитному полю В, то выражение для сила Лоренца будет иметь вид:
  2. Заряды, которые скапливаются на нижней и верхней гранях пластины, создают электрическое поле напряженностью Е, которое будет воздействовать на заряды с силой:
  3. Когда устанавливается стационарное распределение зарядов в поперечном сечении проводника, эти две силы уравновешивают друг друга, то есть Fл = Fэл, поэтому:
  4. Эффект Холла - Справочник студента
  5. Из формулы плотности тока:
  6. Где: q – заряд частицы, n – количество частиц на единицу объема, V – скорость их движения.
  7. Найдем скорость:
  8. Подставим это выражение в формулу (1):
  9. Эффект Холла - Справочник студента
  10. Разность потенциалов между нижней и верхней гранью с расстоянием между ними d, будет равно:
  11. Эффект Холла - Справочник студента
  12. Коэффициент пропорциональности в этой формуле:
  13. Эффект Холла - Справочник студента
  14. Так же его еще называют постоянной Холла. Уравнение (3) примет вид:
  15. Эффект Холла - Справочник студента
  16. Можно сделать вывод, что разность потенциалов между гранями проводника прямо пропорциональна толщине проводящей пластины d, магнитной индукции В и плотности тока j.
  17. Для любопытных видео о датчиках Холла:

Источник: https://elenergi.ru/effekt-xolla.html

Эффект Холла: в чём заключается явление, измерения датчиками, основанными на элементах Холла, формула расчетов

Эффект Холла - Справочник студента

Открытие эффекта Холла

Эффект Холла - Справочник студента

Первый заключался в том, что силы, возникающие в проводнике, расположенном поперечно линиям магнитной индукции, прикладываются непосредственно к веществу. Второй же сообщал, что значение этих сил зависит от скорости движения зарядов. В 1879 году вышла статья учёного Эдмунда Холла, доказывающая факт, что магнитное поле действует с одинаковым усилием как на подвешенный, так и зафиксированный объект.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Юридическое значение конституции российской федерации - справочник студента

Оценим за полчаса!

Анализируя, какая сила может управлять движением заряженных частиц, он пришёл к выводу, что это может быть только напряжение. Для первого опыта физик использовал согнутую в спираль проволоку зажатую между диэлектриков.

Эту конструкцию он поместил между двумя магнитами и запитал её от химического элемента тока. В качестве регистратора использовался мост Витстона с гальванометром Кельвина. В совокупности было проведено около тринадцати экспериментов и более четырёхсот измерений с разными условиями.

Результатами экспериментов стало утверждение, что магнитный поток может изменять сопротивление материала.

По совету профессора Роуланда было выработано направление нового эксперимента, заключающее в следующем:

  1. К проводящей пластине подводился электрический ток.
  2. Гальванометр подключался к краям проводника.
  3. Включался электромагнит так, чтобы линии напряжённости поля лежали перпендикулярно плоскости пластины.

Предполагалось обнаружить условия для изменения протекания тока. Но опыт не получался, пока в качестве пластины не попробовали использовать тонкий лист из золота. Поставленный новый опыт оказался удачным. Гальванометр чётко зафиксировал появившееся напряжение.

В результате был обнаружено, что при подаче на проводник электрического тока заряд в ней распределяется равномерно по всей её поверхности.

Но как только на пластину воздействует магнитное поле, линии индукции которой перпендикулярны направлению тока, заряд перераспределяется к краям, и возникает разность потенциалов. В этом и заключается эффект Холла, на базе которого были после построены одноимённые датчики.

Физико-математическое определение

Эффект Холла — это явление, которое можно наблюдать при помещении вещества проводящего электрический ток под действие магнитного поля.

Физик Холл открыл, что в проводнике, при пропускании по нему постоянного тока появляется электродвижущая сила (ЭДС) если его поместить в поперечное магнитное поле.

Физически это обозначает возникновение напряжения на боковых гранях проводящего вещества при поднесении к нему магнита. Используя это, можно регистрировать магнитное излучение. Возникшее напряжение зависит от трёх факторов:

  • силы тока;
  • напряжённости поля;
  • типа проводника.

Эффект Холла - Справочник студента

Сила, с которой электромагнитное поле действует на точечный заряд в веществе, называется силой Лоренца. Частным её случаем является сила Ампера. Математически напряжённость электрического поля описывается выражением:

E h = R*H*j*sinα, где:

  • H — напряжённость магнитного поля;
  • j — плотность тока;
  • α — векторный угол между силовыми линиями H и j;
  • R — постоянная Холла.

Если к пластине прямоугольной формы, имеющую длину L, которая намного будет превышать ширину b и толщину d, подвести ток, то его значение будет определяться формулой: I = j*b*d. Когда же её переместить в магнитное поле, направленное перпендикулярно этому току, то на боковых гранях пластины возникнет ЭДС, равная:

V h = E h* b = R*H*I/d.

Эффект Холла - Справочник студента

При этом коэффициент Холла равен: R = 1/n*e. Например, для металлов он составляет около 10-3 см3/Кл, а у полупроводников от 10 до 105 см3/Кл.

Постоянную Холла также можно выразить через способность носителей заряда реагировать на внешнее воздействие (подвижность).

Так, она равна: R = µ/σ, где: µ — дрейфовая скорость носителей, а σ — удельная электропроводность. Но это в большей мере справедливо для поликристаллов.

В то же время для анизотропных проводников будет верней формула: R = r/e*n. Здесь r принимается равной единице и обозначает оценку силы магнитного поля.

Разновидности явления

По мере исследования эффекта был обнаружен ряд особенностей появления электрического поля, отличающий от классического понимания. Так, учёными были выявлены факторы, приводящие к появлению напряжения без пропускания через пластинку тока. Такие явления получили название:

  • аномальное;
  • квантовое;
  • спиновое.

Для аномального эффекта необходимым условием является нарушение T-симметрии, то есть уравнений, описывающих физические законы при обращении времени. Наиболее часто этот эффект наблюдается в материалах, имеющих остаточную намагниченность (ферромагнетики).

Эффект Холла - Справочник студента

Квантовое же отклонение возникает в квазидвумерном электронном газе, где пренебрегают кулоновским взаимодействием. В нём носители заряда обладают слабой связью с ионами кристаллической решётки. В такой системе работают законы квантовых теорий.

При этом чем сильнее магнитное поле, тем более выражено дробное явление Холла, связанное с трансформированием структуры всего электронного газа.

В 1971 году учёные Дьяконов и Перель, изучающие механизм спиновой релаксации, обнаружили, что перпендикулярно направлению линий электромагнитного поля наблюдается отклонение носителей зарядов, имеющих противоположные спины. Этот эффект был связан со спин-гальваническим рассеянием и взаимодействием между спиновыми и орбитальными магнитными моментам.

Способы использования явления

На основе эффекта Холла создаются устройства и приборы, обладающие нужными и часто уникальными свойствами. Эти приборы занимают важное место в измерительно-контрольной технике, автоматизации, радиотехнике и т. д. Приспособления, использующие в своей работе явление Холла, называются элементами Холла (датчиками).

Эти датчики дают возможность измерять силу магнитного поля, так как при неизменной величине тока электродвижущая сила прямо пропорциональна линиям магнитной индукции. Прямая зависимость этих величин для элементов Холла является неоспоримым преимуществом перед другими типами измерителей индукции, основанных на контроле магнетосопротивления.

Эффект Холла - Справочник студента

Для этого используется формула эффекта Холла: V h = j*B*H / n*q = B*I / (q*n*α) = R*B*I/α,

из которой число носителей находится как N = (I*B) / (q*α* V h). Таким образом, можно определить не только количество носителей, но и также их тип (знак).

Элементы Холла применяются в автомобилестроении из-за их невысокой стоимости, точности показаний, надёжности и способности не зависеть от условий окружающей среды.

Их используют в конструкции бесконтактных однополярных и биполярных прерывателей.

Благодаря их миниатюрному исполнению электронные гаджеты можно автоматически включать или выключать экран при открытии или закрытии чехла с магнитом. Они помогают в GPS-навигации, улучшая геопозирование.

Источник: https://rusenergetics.ru/praktika/kak-ispolzuetsya-effekt-xolla

Полупроводниковые материалы — Эффект Холла

  • Page 8 of 8
  • Ранее были рассмотрены кинетические явления в полупроводниках (перенос свободных носителей заряда) под действием электрического поля, а также при наличии градиента концентрации (градиента температуры).
  • Гальваномагнитными называют кинетические явления, которые возникают при одновременном действии электрического и магнитного полей.

Если полупроводник (или проводник), вдоль которого течет электрический ток, поместить в магнитное поле, перпендикулярное к направлению тока, то в материале возникает поперечное электрическое поле, перпендикулярное к току и магнитному полю. Это явление получило название эффекта Холла, а возникающая поперечная э.д.с. – э.д.с. Холла.

Читайте также:  Инерция. 1 закон ньютона. инерциальные системы отсчёта - справочник студента

Допустим, что по полупроводнику в виде прямоугольной пластины (рис. 4.17) протекает ток с плотностью

Эффект Холла - Справочник студента. (4.17)

Эффект Холла - Справочник студента

Рис. 4.17. Образец для измерения э.д.с. Холла

Если полупроводник однородный, то его эквипотенциальные поверхности располагаются перпендикулярно к вектору электрического поля e, следовательно, и к вектору плотности тока j.

С учетом сказанного разность потенциалов между точками А и Б будет равной нулю, так как точки лежат в плоскости, перпендикулярной к вектору j.

При помещении такого полупроводника в магнитное поле напряженностью В, на носитель заряда, дрейфующий со скоростью nдр, будет действовать сила Лоренца

. (4.18)

Если скорость носителей заряда определяется внешним электрическим полем, то направление силы Лоренца не зависит от знака заряда, а определяется только взаимным направлением векторов e и В, т. е.

и электроны, и дырки под действием силы Лоренца отклоняются в одну и ту же сторону.

При этом в слабом магнитном поле траектория движения носителей изменяется слабо, а в сильном поле наблюдается значительное искривление траектории.

Для выбранных на рис. 4.18 направлений e и В сила Лоренца действует вверх. Под действием этой силы носители заряда в полупроводнике будут смещаться к верхней поверхности образца.

На нижней поверхности полупроводника возникает дефицит носителей заряда и появляется электрическое поле напряженностью eх, перпендикулярное к направлению внешнего поля e и магнитного поля В. Это явление возникновения поперечной э.д.с.

в полупроводнике с текущим током под действием магнитного поля и называют эффектом Холла. Напряженность поля eх возрастает до тех пор, пока сила, обусловленная этим полем, не скомпенсирует силу Лоренца:

Эффект Холла - Справочник студента. (4.19)

Если ширину образца принять равной b, то холловская разность потенциалов

Эффект Холла - Справочник студента. (4.20)

Воспользовавшись выражением (4.17), можно записать

Эффект Холла - Справочник студента. (4.21)

Рис. 4.18. Отклонение носителей заряда под действием магнитного поля в электронном полупроводнике (а) и в дырочном полупроводнике (б)

  1. Величину Rx принято называть коэффициентом (постоянной) Холла. Для электронных полупроводников
  2. , (4.22)
  3. а для дырочных полупроводников

. (4.23)

Коэффициент Холла обратно пропорционален концентрации основных носителей заряда, а знак его совпадает со знаком этих носителей. Обратно пропорциональная зависимость э.д.с. Холла от концентрации свободных носителей заряда объясняется тем, что при определенной величине тока носители перемещаются тем быстрее и отклоняются магнитным полем тем сильнее, чем меньше их концентрация.

Рассмотренные выше зависимости не учитывают распределения носителей заряда в объеме полупроводника по скоростям. Для учета механизмов рассеяния носителей заряда в полупроводнике вводится холл-фактор r. Тогда для электронного полупроводника коэффициент Холла будет .

При рассеянии на тепловых колебаниях кристаллической решетки r=3p/8, при рассеянии на ионах примеси r=315p/512»1,93. Поскольку рассеяние носителей заряда зависит от температуры, то при определении коэффициента Холла при низких температурах необходимо полагать r=1,93. Для температур, при которых имеет место рассеяние на тепловых колебаниях кристаллической решетки, r=3p/8.

Если в процессе рассеяния одновременно участвуют колебания решетки и ионы примеси, r имеет более сложное выражение.

Произведение |Rx|s имеет размерность подвижности и называется холловской подвижностью носителей заряда mх.

В то же время удельная электропроводность полупроводника, определяемая дрейфовой подвижностью, находится как s=enmдр. Тогда mx=rmдр, то есть холловская подвижность пропорциональна дрейфовой подвижности.

Для металлов и вырожденных полупроводников коэффициент Холла не зависит от механизма рассеяния, поэтому mx=mдр.

Для полупроводников с двумя типами носителей, концентрации и подвижности которых соответственно равны n0, mn и р0, mр, коэффициент Холла

Эффект Холла - Справочник студента. (4.24)

Для собственного полупроводника n0=p0=ni

, (4.25)

где b=mn/mp. Так как обычно b>1, то в собственных полупроводниках Rx

Источник: http://mashmex.ru/materiali/66-poluprovodnikovie-materiali.html?start=7

Понятие и применение эффекта Холла

Эффект Холла был обнаружен Эдвином Холлом в 1879 году, но прошло много лет, прежде чем технологическое развитие позволило интегральным схемам в полной мере воспользоваться этим явлением. Сегодня микросхемы датчика Холла предлагают удобный способ для достижения точных измерений тока, которые обеспечивают электрическую изоляцию между путем измеряемого тока и измерительной цепью.

От Лоренца к Холлу

Эффект Холла является продолжением силы Лоренца, которая описывает силу, действующую на заряженные частицы – такие как электрон – движущиеся в магнитном поле. Если магнитное поле направлено перпендикулярно направлению движения электронов, на электрон действует сила, которая перпендикулярна и направлению движения, и направлению магнитного поля.

Эффект Холла - Справочник студента

Эффект Холла относится к ситуации, в которой сила Лоренца действует на электроны, движущиеся в проводнике, так что разница потенциалов – или другими словами, напряжение – возникает между двумя сторонами проводника.

Эффект Холла - Справочник студента

Следует отметить, что стрелки на втором рисунке показывают направления протекания обычного тока, а это означает, что электроны двигаются в противоположном направлении. Направление силы Лоренца определяется правилом правой руки, учитывающим направление движения электрона относительно магнитного поля. На первом рисунке электрон движется вправо, а сила Лоренца направлена вверх.

На втором рисунке электроны движутся влево, а сила Лоренца направлена вниз, и, таким образом, отрицательный заряд накапливается на нижней стороне проводника. Результатом является разность потенциалом, которая возникает между верхней и нижней кромками проводника, с верхним краем более положительным по сравнению с нижним.

Эта разность потенциалов называется напряжением Холла:

[U_{Холл}=-frac{IB}{eρt}]

Эта формула, которая применяется к токопроводящей пластине, говорит нам, что напряжение Холла зависит от величины тока (I), протекающего через проводник, от магнитной индукции (B), от элементарного заряда электрона (e), количества электронов в единице объема (ρ) и от толщины пластины (t).

Использование эффекта Холла

Напряжения, генерируемые с помощью эффекта Холла малы по отношению к воздействиям шума, смещения и температуры, которые, как правило, влияют на схему, и, таким образом, реальные датчики на основе эффекта Холла не были широко распространены до появления полупроводниковой технологии, позволившей создание компонентов с высокой степенью интеграции, которые включали в себя и элемент Холла, и дополнительную схему, необходимую для усиления напряжения Холла. Тем не менее, датчики на основе эффекта Холла ограничены в своей способности измерять небольшие токи. Например, чувствительность ACS712 от Allegro MicroSystems составляет 185 мВ/А. Это означает, что ток 10 мА создаст выходное напряжение только 1,85 мВ. Это напряжение может быть приемлемым, если у схемы низкий уровень шума, но, если в цепь протекания тока включить резистор 2 Ом, в результате можно получить напряжение 20 мВ, что значительно лучше.

Эффект Холла используется в различных датчиках; устройства, основанные на относительно простой связи между током, магнитным полем и напряжением, могут использоваться для измерения положения, скорости и напряженности магнитного поля. В данной статье мы сосредоточим внимание на устройствах, которые измеряют ток через напряжение Холла, генерируемое, когда магнитное поле, создаваемое измеряемым током, концентрируется в элементе датчика Холла.

Достоинства и недостатки

Характеристики у разных датчиков тока на основе эффекта Холла сильно отличаются, поэтому трудно суммировать достоинства и недостатки использования эффекта Холла относительно другого распространенного способа измерения тока; а именно, вставки прецизионного резистора в цепь протекания тока и измерения появившегося на нем падения напряжения с помощью дифференциального усилителя. В целом, датчики Холла ценятся за «невлияние» и обеспечение электрической изоляции между цепью протекания тока и измерительной цепью. Эти устройства рассматриваются как не оказывающие влияния потому, что в цепь протекания тока не вставляется какого-либо существенного сопротивления, и, таким образом, схема при проведении измерений ведет себя так же, как если бы датчика не было вовсе. Дополнительным преимуществом является то, что датчиком рассеивается минимальная мощность; это особенно важно при измерении больших токов.

Что касается точности, доступные в настоящее время датчики Холла могут достичь минимальной ошибки в 1%. Хорошо продуманный датчик на основе резистора может дать лучший результат, но одного процента, как правило, хватает при работе с большими токами/напряжениями, где и подходит использование датчиков Холла.

Недостатки датчиков Холла включают в себя ограниченный диапазон частот и высокую стоимость. ACS712 работает до 80 кГц, а диапазон Melexis MLX91208, который позиционируется, как «широкополосный», ограничивается верхней границей 250 кГц.

Резистивный датчик тока с высокоскоростным усилителем, с другой стороны, может хорошо работать и мегагерцовом диапазоне. Кроме того, как обсуждалось выше, эффект Холла по своей природе имеет ограничение в отношении измерения малых токов.

Изоляция

Одно из главных преимуществ датчиков Холла заключается в электрической изоляции, которую в контексте проектирования схем и систем называют гальванической развязкой.

Принцип гальванической развязки используется всякий раз, когда проект требует, чтобы две схемы связывались таким способом, который предотвращает любую возможность протекания между ними электрического тока.

Простой пример, когда цифровой сигнал передается через оптоизолятор, который преобразует импульсы напряжения в импульсы света и таким образом передает данные оптическим способом, а не электрическим. Одной из основных причин для реализации гальванической развязки является предотвращение проблем, связанных с земляными контурами:

Эффект Холла - Справочник студента

Основные принципы проектирования схем предполагают, что взаимосвязанные компоненты совместно используют общую точку земли, на которой предполагается 0 В.

В реальной жизни, однако, «земля» состоит из проводников, имеющих ненулевое сопротивление, и эти проводники служат в качестве обратного пути протекания тока от схемы назад к источнику питания.

Закон Ома напоминает нам, что ток и сопротивление дадут напряжение, и это падение напряжения в обратном пути означает, что «земля» в одной части схемы не точно такая же по потенциалу, как «земля» в другой части схемы. Эта разница в потенциалах земли может привести к проблемам, начиная от незначительных до катастрофических.

Для предотвращения протекания постоянного тока между двумя схемами используется гальваническая развязка, позволяющая успешно общаться схемам с различными потенциалами земли.

Это особенно актуально для измерения токов: низковольтный датчик и обрабатывающая цепь могут понадобиться для контроля больших, изменяющихся в больших пределах токов, например, в цепи привода двигателя.

Эти большие, быстро изменяющиеся токи приведут к значительным колебаниям напряжения в цепи обратного пути протекания тока. Датчик Холла позволяет системе контролировать ток привода и защитить схему высокоточного датчика от этих вредных колебаний земли.

Синфазное напряжение

Другое важное применение датчиков Холла заключается в измерении токов при работе с высокими напряжениями. В схеме резистивного датчика тока дифференциальный усилитель измеряет разницу между напряжениями на одной стороне резистора и на другой. Проблема возникает, когда эти напряжения велики по сравнению с потенциалом земли:

Эффект Холла - Справочник студента

Реальные усилители имеют ограниченный «диапазон синфазности», что означает, что устройство не будет функционировать должным образом, разница между входными напряжениями мала, и очень велика разница между ними и землей.

Диапазоны синфазных входных напряжений токоизмерительных усилителей, как правило, не выходят за пределы 80 или 100 В. С другой стороны, датчики Холла могут преобразовать ток в напряжение без связи с потенциалом земли в измеряемой цепи.

Следовательно, пока напряжение не достаточно велико, чтобы вызвать физическое повреждение, синфазное напряжение не влияет на работу датчика Холла.

Оригинал статьи

  • Robert Keim. Understanding and Applying the Hall Effect

Теги

Гальваническая развязкаДатчикДатчик токаДатчик ХоллаЗемляная петляИзмерениеИзмерение токаМагнитное полеЭлектрический токЭффект Холла

Источник: https://radioprog.ru/post/99

Применение эффекта Холла

С.А. МАНЕГО, Ю.А. БУМАЙ, В.В. ЧЕРНЫЙ

  • ЭФФЕКТ ХОЛЛА
  • Рекомендовано УМО по образованию в области приборостроения в качестве учебно-методического пособия для студентов специальностей
  • 1-38 02 01Информационно-измерительная техника
  • 1-38 02 03Техническое обеспечение безопасности
  • Минск
  • БНТУ
  • УДК 537,633,2 (075.8)
  • ББК 22.334я7
  • М23
  • Составители:

С.А. Манего, Ю.А. Бумай, В.В. Черный

Рецензенты:

Кафедра физики полупроводников и наноэлектроники БГУ, С.Н. Собчук

М 23 Эффект Холла /сост. С.А. Манего, Ю.А. Бумай, В.В. Черный. ‒ Минск: БНТУ, 2014. 22 с.

Учебно-методическое пособие содержит в краткой форме теорию важнейшего из гальваномагнитных эффектов – эффекта Холла. Рассмотрены практические применения эффекта.

Приведена также схема экспериментальной установки для исследования эффекта Холла.

Показано, как на основании экспериментальных данных определяются важнейшие характеристики полупроводника – концентрация носителей заряда и их подвижность.

  1. Учебно-методическое пособие предназначено для студентов инженерных специальностей, изучающих раздел “ Электричество и магнетизм ” курса общей физики.
  2. УДК 537,633,2 (075.8)
  3. ББК 22.334я7
  4. © БНТУ, 2014

ЭФФЕКТ ХОЛЛА

Цели работы:

1. Изучить теоретические основы эффекта Холла.

2. Изучить связь параметров материалов с результатами измерений эффекта Холла.

Задачи работы:

1. Провести электрические измерения и измерения эффекта Холла.

2. Определить концентрацию и подвижность носителей тока в полупроводнике.

Гальваномагнитные эффекты

Физические явления, обусловленные движением носителей заряда под действием внешних и внутренних полей или разности температур, называются кинетическими явлениямиили явлениями переноса.

К ним относятся электропроводность и теплопроводность, гальваномагнитные, термомагнитные и термоэлектрические явления. Кинетические явления лежат в основе фотоэлектрических и фотомагнитных эффектов.

Среди многообразия кинетических эффектов под названием гальваномагнитных объединяются эффекты, возникающие в веществе, находящемся в магнитном поле, при прохождении через вещество электрического тока под действием электрического поля.

Другими словами, гальваномагнитные явления наблюдаются в веществе при совместном действии электрического и магнитного полей. К важнейшим гальваномагнитным явлениямотносятся:

1. эффект Холла;

2. магниторезистивный эффект или магнетосопротивление;

3. эффект Эттингсгаузена, или поперечный гальваномагнитный эффект;

4. эффект Нернста, или продольный гальваномагнитный эффект.

Эффекты перечислены в порядке их практической значимости. Названия «продольный» и «поперечный» отражают направление градиентов температуры относительно тока. Рассмотрим эти эффекты

Эффект Холла

Американский физик Эдвин Герберт Холл в 1879 году впервые описал явление, впоследствии названное его именем.

Явление, открытое Холлом, состоит в том, что в проводнике с током, помещенном в магнитное поле, перпендикулярное направлению тока, возникает электрическое поле в направлении, перпендикулярном направлениям тока и магнитного поля.

Наиболее важным применением эффекта Холла является определение концентрации носителей зарядав материалах, проводящих электрический ток, в частности, в полупроводниках, у которых концентрацию носителей зарядов можно произвольно изменить, например, за счет введения примесей.

Обратимся к чисто примесному полупроводнику, для определенности электронному. Схема, иллюстрирующая возникновение эффекта Холла, изображена на рисунке 1.

  • К образцу прямоугольной формы, расположенному по длине вдоль оси Х, приложено электрическое поле Е, вызывающее электрический ток плотностью:
  • Jx = –enVx = σEx, (1),
  • где: e – абсолютная величина заряда электрона; n – собственная концентрация электронов в объеме полупроводника.
  • Образец помещен в магнитное поле В, параллельно оси Z. В результате действия на движущиеся носители силы Лоренца
  • F= –e[V,B] (2)
Читайте также:  Техническое использование переменных токов. генераторы и электродвигатели - справочник студента

электроны отклоняются в отрицательном направлении оси Y(дрейфовая скорость электронов Vнаправлена против тока) и скапливаются у боковой (передней) грани образца. Их накопление идет до тех пор, пока поперечное электрическое поле (поле Холла) не компенсирует поле силы Лоренца в направлении оси Y.

Вследствие появления поперечного поля Холла Ерезультирующее электрическое поле в образце конечных размеров будет повернуто относительно оси Х на некоторый угол φн (угол Холла), а ток будет идти лишь в направлении оси Х. Как видно из рисунка 1, угол определяется при этом соотношением:

Эффект Холла - Справочник студента

где μ – дрейфовая подвижность.

Поскольку поле Холла Еy уравновешивает силу Лоренца, можно полагать, что оно должно быть пропорционально как приложенному полю В, так и току Jx в полупроводнике. Поэтому величину, называемую коэффициентом Холла, определяют так:

Следует обратить внимание на то, что, поскольку поле Холла направленно против оси Y (рис. 1), коэффициент R должен быть отрицательным.

С другой стороны, если бы заряд носителей был положительным (в дырочном полупроводнике), знак их Х-компоненты скорости был бы обратным, и сила Лоренца осталась бы по направлению неизменной. В результате поле Холла, имело бы направление, противоположное тому, которое оно имеет при отрицательно заряженных носителях.

  1. Из этого вывода следует, что по знаку ЭДС Холла можно определить знак носителей заряда и,следовательно, тип проводимости полупроводника.
  2. Чтобы рассчитать коэффициент Холла, воспользуемся выражением для общей силы, действующей на электрон со стороны электрического и магнитного полей. В общем случае эта сила определяется векторным уравнением:
  3. F= –еЕ– e[V,B]. (5)

Рис. 1. Схема возникновения эффекта Холла при действии силы Лоренца на движущиеся электроны.

  • Величина холловского поля определяется балансом сил в направлении оси Y, при котором F= 0. Отсюда:
  • Еy = –VxB. (6
  • Тогда, воспользовавшись соотношением (1), имеем:

Сравнивая (4) и (7), видим, что:

Таким образом, коэффициент Холла обратно пропорционален концентрации носителейи ни от каких других параметров полупроводника не зависит. Знак «минус» показывает электронную проводимость, дырочной проводимости соответствует знак «плюс».

Для практического определения коэффициента Холла воспользуемся уравнением (7), заменив напряженность электрического поля Ey потенциалом поля.

В случае однородного образца мы имеем:

где Ux – холловская разность потенциалов или э.д.с.Холла. С учетом выражений (7) и (10) э.д.с. Холла равна:

Эффект Холла - Справочник студента

  1. где: — a и b поперечные размеры образца, a, b(соответственно по направлениям z и y); Ix – сила тока, протекающая через образец; Bz – индукция магнитного поля.
  2. В действительности произведенный элементарный вывод коэффициента Холла не точен: в нем предполагалось, что все носители имеют одинаковую дрейфовую скорость, и не учитывался характер распределения электронов по скоростям и механизм рассеяния носителей.
  3. Более строгое выражение для коэффициента Холла имеет вид:
  4. (12),

где r = /2, r – называют холл-фактором, τ – время релаксации носителей заряда. Через n в данном случае обозначена концентрация носителей (электронов или дырок). Параметр r является атрибутом реального твердого тела и зависит от механизма рассеяния носителей.

  • Так, — при рассеянии на ионах примеси r = 315π/512 = 1,93, что обычно имеет место в области низких температур;
  • — при рассеянии на тепловых колебаниях решетки r = 3π/8 = 1,18 — соответствует более высокой области температур;
  • — при рассеянии на нейтральных примесях, а также в металлах и сильно вырожденных полупроводниках r = 1.
  • В полупроводнике со смешанной проводимостью в слабом магнитном поле ( ) коэффициент Холла равен
  • (13)
  • Так как в случае собственной проводимости n = p = ni, то, введя b = μn / μp, для собственного полупроводника, получим:
  • , (14)

т. е. знак определяется тем типом носителей тока, подвижность которых больше. Обычно отношение дрейфовых подвижностей b > 1 и R < 0. В частном случае собственного полупроводника, когда подвижности электронов и дырок равны между собой (n = p и μn = μp), коэффициент Холла, а следовательно, и ЭДС Холла равны нулю.

Из формулы (13) следует, что для получения максимальных значений RH целесообразно использовать полупроводник с одним знаком носителей заряда. В этом случае (13) переходит в (12) и ЭДС Холла максимальна.

  1. Рассмотрим теперь произведение коэффициента Холла Rн и электропроводности σ = enμ для чисто примесного полупроводника. С учетом (12)
  2. (15)
  3. Мы видим, что величина ||σ пропорциональна величине дрейфовой подвижности μ, при этом коэффициентом пропорциональности является безразмерная константа r (холл-фактор). Поэтому величина
  4. μn=||σ (16)
  5. имеет размерность подвижности и называется холловской подвижностью.

Таким образом, определив экспериментально Rн, σ и взяв их произведение, получим μn. Если известен механизм рассеяния, то по μn можно определить дрейфовую подвижность μ = μn/r, а по Rн – концентрацию носителей заряда и их знак; благодаря этому эффект Холла является одним из важнейших методов исследования полупроводника.

  • Выражение для практического определения коэффициента Холла можно получить из формулы (11):
  • (17)
  • В системе СИ Rx имеет размерность м3/Кл. Тогда из формулы (12) можно найти концентрацию носителей заряда
  • (18)
  • (19)

Одновременно с постоянной Холла определяют удельную проводимость образца «σ». Для образца с данными размерами (рис.2) удельная проводимость определяется по формуле:

  1. (20)
  2. Так как
  3. (21)
  4. (22)
  5. Отсюда, можно определить подвижность электронов и дырок:
  6. (23)
  7. (24)
  8. Применение эффекта Холла

На основе эффекта Холла можно создать ряд устройств и приборов, обладающих ценными и даже уникальными свойствами и занимающих важное место в измерительной технике, автоматике, радиотехнике и т. д. Приборы, созданные на основе эффекта Холла, называют датчиками Холла.

Датчики Холла позволяют измерять величину магнитного поля. Как видно из (11), при постоянной величине тока Э.Д.С. Холла прямо пропорциональна магнитной индукции. Линейная зависимость этих величин для датчиков Холла является преимуществом перед измерителями индукции на основе магнетосопротивления.

Датчики Холла также позволяют измерять электрические и магнитные характеристики металлов и полупроводников. В настоящее время в силу высокой точности, постоянства данных, надежности они нашли широкое применение в различных отраслях науки и техники.

Датчики Холла могут применяться для измерения силы, давлений, углов, перемещений и других неэлектрических величин. При производстве полупроводниковых материалов эффект Холла используется для измерения подвижности и концентрации носителей в них. Для этой цели на специальном подготовленном образце измеряют э. д. с.

Холла и по его величине судят о подвижности и концентрации носителей заряда материала, используемого для изготовления полупроводниковых приборов.

Датчики Холла используются в автомобилях, из-за их низкой стоимости, качества, надежности и способности противостоять жестким условиям окружающей среды. Датчики Холла используют в создании бесконтактных однополярных и биполярных выключателей и переключателей. Основные преимущества датчиков Холла — бесконтактность, отсутствие любых механических нагрузок и загрязнений.

Рекомендуемые страницы:

Источник: https://poisk-ru.ru/s10870t3.html

Эффект Холла: принцип работы, теория, формула, применение

Принцип эффекта Холла — одна из самых популярных теорий измерения магнитного поля. В этом посте будет обсуждаться эффект Холла: принцип его работы, объяснение теории, формула, применение, включая расчеты для напряжения Холла, коэффициента Холла, концентрации носителей заряда, подвижности Холла и плотности магнитного поля.

Принцип эффекта Холла объясняет поведение носителей заряда при воздействии электрического и магнитного полей. Этот принцип можно рассматривать как расширение силы Лоренца, которая является силой, действующей на носители заряда (электроны и отверстия), проходящие через магнитное поле.

Датчики, работающие по этому принципу, называются датчиками Холла. Эти датчики пользуются большим спросом и имеют очень широкое применение, например, датчики приближения, переключатели, датчики скорости вращения колес, датчики положения и так далее.

История эффекта Холла

Принцип эффекта Холла был назван в честь американского физика Эдвина Холла (1855–1938). Впервые он был представлен миру в 1879 году.

В 1879 году он обнаружил, что когда проводник / полупроводник с током расположен перпендикулярно магнитному полю, генерируется напряжение, которое можно измерить под прямым углом к пути тока. До этого времени электрический ток в проводе считался чем-то похожим на текущую жидкость в трубе.

Принцип эффекта Холла предполагает, что магнитная сила в токе приводит к скученности на конце трубы или провода.

Электромагнитный принцип теперь объясняет явления, лежащие в основе эффекта Холла, гораздо лучше. Теория этого ученого, безусловно, намного опередила свое время.

Лишь два десятилетия спустя, с введением полупроводников, работы по исследованию эффекта Холла были эффективно использованы.

Первоначально этот принцип использовался для классификации химических образцов.

Позднее датчики Холла (с использованием полупроводниковых соединений арсенида индия) стали источником для измерения постоянного или статического магнитного поля без поддержания датчика в движении.

Через десятилетие, в 1960-х годах, появились кремниевые полупроводники. Это было время, когда элементы Холла были объединены со встроенными усилителями, и таким образом выключатель Холла был представлен миру.

Принцип работы эффекта Холла

Принцип эффекта Холла гласит, что когда проводник или полупроводник с током, текущим в одном направлении, вводится перпендикулярно магнитному полю, напряжение может быть измерено под прямым углом к пути тока.

Эффект получения измеримого напряжения, как сказано выше, называется эффектом Холла.

Теория за принципом эффекта Холла

Прежде всего мы должны понять, что такое электрический ток. Электрический ток — это в основном поток заряженных частиц через проводящий путь. Эти заряженные частицы могут быть «отрицательно заряженными электронами» или даже «положительно заряженными отверстиями» (пустоты, в которых должны находиться электроны). Теперь давайте перейдем к теме.

Если мы возьмем тонкую проводящую пластину (как показано выше на рис. 1 и повторено ниже для простоты считывания) и подключим ее к цепи с батареей (источником напряжения), то ток начнет течь по ней. Носители заряда будут течь по прямой линии от одного конца пластины к другому.

Поскольку носители заряда находятся в движении, они будут создавать магнитное поле. Теперь, когда вы поместите магнит рядом с пластиной, его магнитное поле будет искажать магнитное поле носителей заряда. Это расстроит прямой поток носителей заряда. Сила, которая нарушает направление потока носителей заряда, называется силой Лоренца.

Из-за искажения в магнитном поле носителей заряда отрицательные заряженные электроны будут отклоняться на одну сторону пластины, а положительные заряженные дыры — на другую сторону. Вот почему разность потенциалов (также называемая напряжением Холла) будет генерироваться между обеими сторонами пластины, что можно измерить с помощью измерителя.

Этот эффект известен как эффект Холла. Чем сильнее магнитное поле, тем больше электронов будет отклоняться. Это означает, что чем выше ток, тем больше электронов будет отклоняться. И чем больше будут отклоняться электроны, тем больше будет разность потенциалов между обеими сторонами пластины. Поэтому мы можем сказать, что:

Напряжение Холла прямо пропорционально электрическому току, и прямо пропорционально приложенному магнитному полю.

Формула эффекта Холла

Вот некоторые математические выражения, которые широко используются в вычислениях эффекта Холла:

Напряжение Холла

Напряжение Холла представлено V H. Формула для напряжения Холла:

  • Где:
  • I — Ток, протекающий через датчик
  • B — напряженность магнитного поля
  • q — заряд
  • n — количество носителей заряда на единицу объема
  • d — толщина датчика

Коэффициент Холла

Он представлен RH. Формула для коэффициента Холла: RH равно 1 / (qn). Коэффициент Холла (R H) положителен, если число отверстий положительного заряда больше, чем число электронов отрицательного заряда. Аналогично, коэффициент Холла (RH) отрицателен, если число отрицательных зарядовых электронов больше, чем число отверстий положительного заряда.

Концентрация несущей заряда

Концентрация электронов в носителе заряда обозначена как «n», а «дырки» — как «p». Математическое выражение для концентрации носителей заряда:

Холловская  мобильности

Холловская мобильность для электронов представлена как «μ n», а для отверстий — как «μ p». Математическое выражение для мобильности Холла:

  1. Где:
  2. μ n — проводимость за счет электронов
  3. μ p — проводимость благодаря отверстиям

Плотность магнитного потока

Плотность магнитного потока обозначена буквой «B». Формула для плотности магнитного потока:

Применение принципа эффекта Холла

Принцип эффекта Холла используется в следующих случаях:

  • Оборудование для измерения магнитного поля.
  • Множитель приложений для обеспечения фактического умножения.
  • Тестер эффекта Холла для измерения постоянного тока.
  • Измерение фазового угла. Например, при измерении углового положения коленчатого вала, чтобы точно выровнять угол зажигания свечей зажигания
  • Датчики линейных или угловых перемещений. Например, чтобы определить положение автомобильных сидений и ремней безопасности и выступить в роли блокировки для управления подушкой безопасности.
  • Датчики приближения.
  • Датчики с эффектом Холла
  • Для определения скорости вращения колеса и, соответственно, помощи антиблокировочной тормозной системы (ABS).

Как эффект Холла можно использовать для определения типа используемого полупроводника

Коэффициент Холла говорит обо всем. Если коэффициент Холла отрицателен, это означает, что основными носителями заряда являются электроны.

И поскольку число электронов больше по сравнению с отверстиями в полупроводниках n-типа, это ясно указывает на то, что испытываемый полупроводник n-типа. Аналогичным образом, если коэффициент Холла положительный, это означает, что основными носителями заряда являются дырки.

И поскольку число отверстий больше по сравнению с электронами в полупроводниках p-типа, это ясно указывает на то, что испытываемый полупроводник p-типа.

Источник: https://meanders.ru/jeffekta-holla-princip-raboty-objasnenie-teorii-formula.shtml

Ссылка на основную публикацию