Работа и мощность переменного тока — справочник студента

          Если в цепи имеется лишь омическое сопротивление, то мощность, рассеиваемая на этом сопротивлении, переходит в тепло:

.                                         (6.54)

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Индуктивные свойства цепи характеризуются , и мощность, развиваемая источником на индуктивности,

.                                       (6.55)

Ясно, что  может быть положительной или отрицательной в зависимости от знака . Эта мощность расходуется на энергию магнитного поля.

          Если в цепи есть конденсатор, то мощность на пластинах емкости:

Работа и мощность переменного тока - Справочник студента

Она также может иметь различные знаки в зависимости от знака , превращаясь в энергию электрического поля.

Общая мощность:

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Особенности исполнения гражданских обязательств - справочник студента

Оценим за полчаса!

Работа и мощность переменного тока - Справочник студента
Работа и мощность переменного тока - Справочник студента

Начиная отсчет фазы от  (или ) с учетом сдвига фаз можно записать:

Работа и мощность переменного тока - Справочник студента
Работа и мощность переменного тока - Справочник студента
Работа и мощность переменного тока - Справочник студента

Такие мощности называются мгновенными, ибо формулы верны при любом . Для получения средней мощности за период необходимо усреднить эти выражения. С учетом того, что:

Работа и мощность переменного тока - Справочник студента

найдем:

Работа и мощность переменного тока - Справочник студента

Поэтому  — активное сопротивление, так как выделяемая на нем средняя мощность отлична от нуля; ‑ реактивные сопротивления.

Мгновенная мощность, выделяемая в цепи:

Работа и мощность переменного тока - Справочник студента

Тогда средняя мощность:

Работа и мощность переменного тока - Справочник студента

          Из векторной диаграммы рис.6.15 видно, что , следовательно:

,

где  — разность фаз между  и . Это выражение совпадает с (6.58). Множитель  называется коэффициентом мощности. Формулу для  можно сделать идентичной формуле для постоянного тока, если ввести обозначения:

.                 (6.59)

Эти формулы легко получить как среднеквадратичные по периоду значения:

.

Данные значения называются действующими (эффективными). Все приборы отградуированы на эти значения.

.

При , , каковы бы ни были значения . В этом случае энергия, передаваемая от источника во внешнюю цепь, в точности равна за период энергии, возвращаемой из внешней цепи в источник. Вся энергия бесполезно колеблется между источником и внешней цепью.

Мощность, потребляемая во внешней цепи, максимальна при . Из формулы для  ясно, что если общее реактивное сопротивление велико по сравнению с активным: , то  также велико. Значит, нужно сделать реактивное сопротивление как можно меньше: , чтобы коэффициент мощности был порядка единицы и потребляемая мощность была максимальной.

Источник: https://students-library.com/library/read/94747-rabota-i-mosnost-peremennogo-toka

Работа и мощность тока — урок. Физика, 8 класс

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

U=Aq, где (U) — напряжение, (А) — работа тока, (q) — электрический заряд.

Таким образом:

Напряжение на концах участка цепи численно равно работе, которая совершается при прохождении по этому участку электрического заряда в (1) Кл.

При прохождении по этому же участку электрического заряда, равного не (1) Кл, а, например, (10) Кл, совершённая работа будет в (10) раз больше.

Это означает, что, чтобы определить работу электрического тока на каком-либо участке цепи, надо напряжение на концах этого участка цепи умножить на электрический заряд, прошедший по нему: A=U⋅q.

Для выражения любой из величин можно использовать приведённые ниже рисунки.

Работа и мощность переменного тока - Справочник студентаЭлектрический заряд, прошедший по участку цепи, можно определить, измерив силу тока и время его прохождения: q=I⋅t. Используя это соотношение и подставляя его в формулу A=U⋅q, получим формулу для нахождения работы электрического тока: A=U⋅I⋅t.

Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.

Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.

Работа и мощность переменного тока - Справочник студента

Как известно, работу измеряют в джоулях, напряжение — в вольтах, силу тока — в амперах, а время — в секундах.

Тогда  1 джоуль = 1 вольт · 1 ампер · 1 секунду, или 1 Дж = 1 В · А ·С.

Из вышесказанного следует, что для измерения работы электрического тока нужны вольтметр, амперметр и часы.

Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке.

Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.

Работа и мощность переменного тока - Справочник студентаРабота и мощность переменного тока - Справочник студента

Например:

I = 1,2 АU = 5 Вt = 1,5 мин = 90 сА = U⋅I⋅t = 5⋅1,2⋅90 = 540 Дж 

Обрати внимание!

Работа чаще всего выражается в килоджоулях или мегаджоулях.

(1) кДж = 1000 Дж или (1) Дж = (0,001) кДж;(1) МДж = 1000000 Дж или (1) Дж = (0,000001) МДж.

На практике работу электрического тока измеряют специальными приборами — счётчиками. Счётчики электроэнергии можно видеть в каждом доме.

Работа и мощность переменного тока - Справочник студента

Из курса физики известно, что мощность численно равна работе, совершённой в единицу времени: N = Аt. Следовательно, чтобы найти мощность электрического тока, надо его работу, A=U⋅I⋅t, разделить на время.

В отличие от механической мощности мощность тока обозначают буквой (Р):

P=At=U⋅I⋅tt=U⋅I. Отсюда следует:

Мощность электрического тока равна произведению напряжения на силу тока: P=U⋅I.

Из этой формулы можно определить и другие физические величины.Для удобства можно использовать приведённые ниже рисунки.

Работа и мощность переменного тока - Справочник студента

  • За единицу мощности принят ватт: (1) Вт = (1) Дж/с.
  • Из формулы P=U⋅I следует, что
  • (1) ватт = (1) вольт х (1) ампер, или (1) Вт = (1) В ∙ А.

Обрати внимание!

Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).(1) гВт = (100) Вт или (1) Вт = (0,01) гВт;(1) кВт = (1000) Вт или (1) Вт = (0,001) кВт;

(1) МВт = (1 000 000) Вт или (1) Вт = (0,000001) МВт.

Измерить мощность электрического тока можно с помощью вольтметра и амперметра.

Работа и мощность переменного тока - Справочник студента

Чтобы вычислить искомую мощность, необходимо напряжение умножить на силу тока. Значение силы тока и напряжение определяют по показаниям приборов.

I=1,2АU=5ВP =U⋅I=5⋅1,2=6Вт.

Существуют специальные приборы — ваттметры, которые непосредственно измеряют мощность электрического тока в цепи. Они бывают аналоговые и цифровые. В зависимости от сферы применения у них различаются пределы измерения.

Аналоговый ваттметр Аналоговый ваттметр Аналоговый ваттметр Цифровой ваттметр
Работа и мощность переменного тока - Справочник студента Работа и мощность переменного тока - Справочник студента Работа и мощность переменного тока - Справочник студента

Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.

 

Сила тока в лампочке мощностью (25) ватт будет составлять (0,1) А. Лампочка мощностью (100) ватт потребляет ток в четыре раза больше — (0,4) А. Напряжение в этом эксперименте неизменно и равно (220) В.

Легко можно заметить, что лампочка в (100) ватт светится гораздо ярче, чем (25)-ваттовая лампочка. Это происходит оттого, что её мощность больше.

Лампочка, мощность которой в (4) раза больше, потребляет в (4) раза больше тока. Значит: 

Обрати внимание!

Мощность прямо пропорциональна силе тока.

Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение (110) В и (220) В.

  

Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:

Обрати внимание!

Мощность зависит от напряжения.

Рассчитаем мощность лампочки в каждом случае:

I=0,2АU=110ВP=U⋅I=110⋅0,2=22Вт I=0,4АU=220ВP=U⋅I=220⋅0,4=88Вт.

Можно сделать вывод о том, что при увеличении напряжения в (2) раза мощность увеличивается в (4) раза.

Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа).

Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).

Читайте также:  Объем тела вращения и площадь поверхности тела вращения - справочник студента

В таблице дана мощность, потребляемая различными приборами и устройствами:

Название Рисунок Мощность
 Калькулятор (0,001) Вт
 Лампы дневного света (15 — 80) Вт
 Лампы накаливания (25 — 5000) Вт
 Компьютер (200 — 450) Вт
 Электрический чайник (650 — 3100) Вт
 Пылесос (1500 — 3000) Вт
 Стиральная машина (2000 — 4000) Вт
 Трамвай (150 000 — 240000) Вт

Источники:

Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

http://уроки.мирфизики.рф/%d1%80%d0%b0%d0%b1%d0%be%d1%82%d0%b0-%d0%b8-%d0%bc%d0%be%d1%89%d0%bd%d0%be%d1%81%d1%82%d1%8c-%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%be%d0%b3%d0%be-%d1%82%d0%be%d0%ba/

http://phscs.ru/physicsus/electric-power

http://class-fizika.narod.ru/8_34.htm

Источник: https://www.yaklass.ru/p/fizika/8-klass/elektricheskie-iavleniia-12351/rabota-i-moshchnost-toka-12367/re-aa44330a-39ec-4dd0-a3d2-d70ed142a191

Мощность переменного тока: измерение, формула

Мощность — то, что характеризует скорость передачи с преобразованием электроэнергии. Какие есть нормы мощности в сети переменного тока и виды, что такое активная и реактивная мощность? Об этом и другом далее.

Нормы мощности в сети переменного тока

Напряжение и мощность — то, что нужно знать каждому человеку, живущему в квартире или частном доме. Стандартное напряжение сети переменного тока в квартире и частном доме выражается в количестве 220 и 380 ватт.

Что касается определения количественной меры силы электрической энергии, необходимо сложить электрический ток с напряжением или же измерить необходимый показатель ваттметром.

При этом чтобы сделать измерения последним аппаратом, нужно использовать щупы и специальные программы.

Работа и мощность переменного тока - Справочник студента

Что такое мощность переменного тока

Мощность переменного тока определяется соотношением величины тока со временем, которая производит работу за определенное время. Обычный пользователь использует мощностный показатель, передаваемый ему поставщиком электрической энергии. Как правило, он равен 5-12 киловатт. Этих цифр хватает, чтобы обеспечить работоспособность необходимого бытового электрооборудования.

Этот показатель зависит от того, какие внешние условия поступления энергии в дом, какие поставлены ограничительные токовые устройства (автоматы или полуавтоматы), регулирующие момент поступления мощностных емкостей к потребительскому источнику. Это совершается на разных уровнях, от бытового электрощита до центрального устройства электрического распределения.

Работа и мощность переменного тока - Справочник студента

Мощностные нормы в сети переменного тока

Характеристики

Переменный ток течет по цепи и меняет свое направление с величиной. Создает магнитное поле. Поэтому его нередко называют периодическим синусоидальным переменным электротоком.

Согласно закону кривой линии, величина его меняется через конкретный промежуток времени. Поэтому он называется синусоидным. Имеет свои параметры.

Из важных стоит указать период с частотой, амплитудой и мгновенным значением.

Период — это то время, на протяжении которого происходит изменение электротока, а затем оно повторяется вновь. Частота — период течение за секунду. Измеряется в герцах, килогерцах и миллигерцах.

Вам это будет интересно  Определение падения напряжения

Амплитуда — токовое максимальное значение с напряжением и эффективностью протекания на протяжении полного периода. Мгновенное значение — переменный ток или напряжение, возникающее за конкретное время.

Работа и мощность переменного тока - Справочник студента

Характеристики переменного тока

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии.

Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N.

В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Работа и мощность переменного тока - Справочник студента

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Работа и мощность переменного тока - Справочник студента

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов. Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением.

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности.

Работа и мощность переменного тока - Справочник студента

Реактивная разновидность

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Вам это будет интересно  Определение резонанса

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Работа и мощность переменного тока - Справочник студента

Полная разновидность

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи.

Аргументом является фазовый сдвиг между электротоком с сетевым напряжением.

Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Работа и мощность переменного тока - Справочник студента

Комплексная разновидность

Как узнать какая мощность в цепи переменного тока

Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения.

Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой.

Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.

Работа и мощность переменного тока - Справочник студента

Формула мощности в цепи переменного тока

В однофазной цепи

Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока.

В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения.

Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.

Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения.

Вам это будет интересно  Особенности расчёта токов КЗ

Работа и мощность переменного тока - Справочник студента

В однофазной цепи

В трехфазной цепи

В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.

Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.

Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема.

Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости.

Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение.

Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.

В трехфазной цепи

В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.

Источник: https://rusenergetics.ru/polezno-znat/moschnost-peremennogo-toka

Мощность переменного тока. Работа переменного тока

Господа, всех вас в очередной раз приветствую! В сегодняшней статье я бы хотел поднять темы, касающиеся мощности и энергии (работы) в цепях переменного тока. Сегодня мы узнаем, что это такое и научимся их определять. Итак, погнали.

Прежде чем начать что-либо обсуждать про переменный ток, давайте-ка вспомним, как мы определяли мощность в случае постоянного тока. Да-да, у нас была отдельная статейка на эту тему, помните? Если нет, то напоминаю, что в случае постоянного тока мощность в цепи считается очень просто, по одной из этих трех замечательных формул:

  • Работа и мощность переменного тока - Справочник студента
  • где P – искомая мощность, которая выделяется на резисторе R;
  • I – сила тока в цепи через резистор R;
  • U – напряжение на резисторе R.

Это все здорово.

Но как быть в случае переменного тока, а в частности – синусоидального? Ведь там у нас колбасится синус, значения тока и напряжения все время меняются, сейчас они одни, через мгновение – уже другие, т.е., выражаясь научным языком, они являются функциями времени. Пользуясь знаниями, полученными нами в предыдущей вводной статье, мы можем записать вот такой закон изменения силы тока:

  1. Работа и мощность переменного тока - Справочник студента
  2. Мы не будем сейчас повторять что здесь есть что, все это было досконально рассмотрено в прошлый раз.
  3. Абсолютно аналогично можно записать зависимость напряжения от времени для переменного синусоидального тока
  4. Работа и мощность переменного тока - Справочник студента

Пока что считаем, что у нас в цепи только резисторы (конденсаторы и индуктивности отсутствуют), следовательно, напряжение и ток совпадают по фазе между собой. Не понятно почему так? Ничего, в будущем разберем это подробно. Пока же для нас это значит только то, что фазы как в законе изменения тока, так и в законе изменения напряжения можно выкинуть.

И вот глядя на эти три строчки с формул и сопоставляя их между собой, не приходит ли вам на ум какая-либо идея? Например, что можно бы подставить ток или напряжение в формулу для мощности…

Такая идея пришла? Это просто замечательно! Давайте ее сейчас же реализуем! Поскольку у нас и ток, и напряжения зависят от времени, все три полученные новые формула для мощности абсолютно также будет зависеть от времени.

Работа и мощность переменного тока - Справочник студента

Ох, прям в глазах рябит от синусов . Но ведь все довольно просто и очевидно откуда, что получилось, не так ли? По вот этим вот самым формулам можно рассчитать мгновенную мощность в определенный момент времени. Фишка в том, что если через резистор течет переменный ток, то в каждое мгновение времени на нем будет выделяться вообще говоря разная мощность: иначе и быть не может, раз амплитуда тока через резистор все время разная. Другое дело, что визуально, при большой частоте изменения тока, мы скорее всего это не заметим: температура резистора не будет хаотично скакать в такт изменения мощности, которая на нем выделяется. Это будет потому, что сам резистор благодаря его массе и теплоемкости синтегрирует эти перепады температуры.

Итак, с мощностью более-менее понятно. А как быть с энергией? Ну, то есть с теплом, которое выделяется на резисторе? Как оценить эту самую энергию? Для этого нам надо вспомнить, как же связаны между собой мощность и энергия.

Мы уже затрагивали эту тему в статье про мощность в цепи постоянного тока. Тогда этот вопрос решился просто: при постоянном токе достаточно умножить мощность (которая там не зависит от времени и все время одинакова) на время наблюдения и получить выделяющуюся за это самое время наблюдения энергию.

С переменным током все посложнее, потому что тут мощность зависит от времени. И, увы, тут не обойтись без интегралов… Что это вообще такое этот самый интеграл? Как, вероятно, многие из вас знают, интеграл – это просто площадь под графиком.

В данном конкретном случае под графиком зависимости мощности от времени P(t). Да, вот так вот все просто.

  • Итак, энергия (или работа, что по сути одно и то же) в цепи переменного тока считается следующим образом
  • Работа и мощность переменного тока - Справочник студента
  • В этой формуле Q – это искомая работа (энергия) переменного тока (измеряется все так же в джоулях), P(t) – закон изменения мощности от времени, а Т – собственно, сам отрезок времени, который мы рассматриваем, и в течении которого ток работает.

Вообще говоря, это выражение можно рассматривать как общий случай и для постоянного тока, и для переменного (при этом переменный ток может быть любой формы, не обязательно синусоидальный). Во всех эих случаях можно считать энергию через вот этот вот интеграл.

Если же мы подставим сюда P(t)=const (случай постоянного тока), то исходя из особенности взятия интеграла от константы результат расчета будет абсолютно таким же, как если бы мы просто умножили мощность на время, поэтому нет никакого смысла так заморачиваться и рассматривать интегралы в теме постоянного тока.

Но полезно это знать, что бы была некая единая картина.

Сейчас же, господа, я прошу вас запомнить главный вывод из всей этой болтовни – если мы хотим найти выделившуюся энергия за время T (без разницы какой ток – постоянный или переменный), то это можно сделать, найдя площадь под графиком зависимости мощности от времени на интервале от 0 до Т.

Читайте также:  Источники света - справочник студента

Если брать токи синусоидальные и подставлять конкретные выражения для зависимости мощности от времени, то энергию можно посчитать по одной из следующих формул

Работа и мощность переменного тока - Справочник студента

Господа, скажу сразу, в своих статьях я не буду рассказывать, как брать интегралы. Я надеюсь, что вы это знаете. А если нет – ничего страшного, не спешите закрывать статью.

Я буду стараться строить изложение таким образом, чтобы незнание интегралов не привело в вашем сознании к fatal error . Очень часто их вообще не требуется считать ручками, а можно посчитать в специализированных программах или даже онлайн на многочисленных сайтах.

Давайте теперь разберем все вышесказанное на конкретном примере. Господа, специально для вас я подготовил рисуночек 1. Взгляните на него. Изображение кликабельно.

Работа и мощность переменного тока - Справочник студента

Рисунок 1 – Зависимость мощности от времени для переменного и постоянного тока

Там два графика: на верхнем показана зависимость мощности от времени для случая переменного синусоидального тока, а на нижнем – для случая постоянного тока. Как я их построил? Очень просто. Для первого графика я взял вот эту ранее написанную нами формулу.

  1. Работа и мощность переменного тока - Справочник студента
  2. Будем полагать, что амплитуда синусоидального тока равна Im=1 A, сопротивление резистора, на котором рассеивается мощность, равно R=5 Ом, а частота синуса равна f = 1 Гц, что соответствует круговой частоте
  3. То есть формула, по которой мы строим график мощности переменного тока, имеет вид
  4. Именно по этой формуле построен верхний график на рисунке 1.

А как быть с нижним графиком? Господа, ну тут совсем все просто. Я исходил из того, что через тот же самый резистор R=5 Ом течет постоянный ток величиной I=1 А. Тогда, как должно быть понятно из закона Джоуля-Ленца, на данном резисторе будет рассеиваться вот такая вот мощность

Поскольку ток постоянный, то эта мощность будет одинаковой в любой момент времени. А для таких замечательнейших случаев эталонной стабильности великая и могучая математика предусматривает график в виде прямой. Что мы и видим на нижнем графике рисунка 1.

Понятное дело, что раз через наши пятиомные резисторы течет ток, то на них выделяется некоторая мощность и рассеивается некоторое количество энергии. Иными словами, резистор греется за счет выделяющейся на нем энергии. Мы уже обсуждали, что эта энергия считается через интеграл.

Но, как мы уже говорили, есть и графическое представление этого интеграла – он равен площади под графиком. Эту площадь я заштриховал на рисунке 1.

То есть, если мы найдем, чему равна площадь под верхним и нижним графиками, то мы определим, какое количество энергии выделилось в первом и втором случае.

Ну, с нижним графиком вообще все просто. Там – прямоугольник высотой 5 Вт и шириной 2 секунды. Поэтому площадь (то бишь энергия) находится элементарно

Отметим, что этот результат в точности совпадает с формулой, полученной нам для расчета энергии постоянного тока в одной из прошлых статей.

Со верхним графиком все не так просто. Там у нас неправильная форма и просто так сразу нельзя сказать, чему равна эта площадь. Вернее, сказать можно – она равна вот такому вот интегралу

Результат вычисления этого интеграла равен конкретному числу и это число – как раз наша искомая энергия, которая выделилась на резисторе. Мы не будем расписывать взятие этого интеграла. Посчитать такой интеграл ручками не составит труда для человека, хотя бы поверхностного знакомого с математикой.

Если же все-таки это вызывает затруднение, или просто лень самому считать – есть огромное количество САПРа, которое сделает это за вас. Либо можно посчитать этот интеграл на каком-либо сайте: по запросу в гугле «интегралы онлайн» выдается достаточное количество результатов.

Итак, сразу переходим к ответу и он равен

Вот так вот. Энергия, которая выделяется на резисторе при протекании синусоидального тока с амплитудой 1 А почти в два раза меньше энергии, которая будет выделяться в случае, если течет постоянный ток величиной 1 А. Оно и понятно – даже визуально на рисунке 1 площадь под верхним графиком заметно ниже, чем под нижним.

Как-то так, господа. Теперь вы знаете, как рассчитать мощность и энергию в цепи переменного тока. Однако сегодня мы рассмотрели довольно сложный путь. Оказывается, есть методы попроще, с использованием так называемых действующих величин тока и напряжения. Но об этом в следующей статье.

А пока что – всем вам огромной удачи, спасибо, что прочитали, и пока!

Источник: http://myelectronix.ru/peremennyy-tok/55-moshchnost-peremennogo-toka-rabota-peremennogo-toka

Переменный ток

“Стартовые” задачи по теме “переменный ток”. Познакомимся с понятиями индуктивного и емкостного сопротивлений, полного сопротивления, узнаем, что такое амплитудное и действующее значение тока и напряжения.

Задача 1. В цепь переменного тока последовательно включены конденсатор, резистор и катушка индуктивности. Как соотносятся по фазе колебания напряжения на этих элементах от фазы колебаний силы тока в цепи?

  • А)   на обкладках конденсатора;
  • Б) на зажимах резистора;
  • В) на зажимах катушки.
    1) отстают-по фазе от силы тока на ;
  • 2) опережают по фазе силу тока на ;
  • 3) совпадают по фазе с колебаниями силы тока;
    4) опережают по фазе силу тока на катушки на некоторый угол .
  • Ток и напряжение в резисторе совпадают по фазе, всегда.
    Чтобы хорошо запомнить, как соотносятся фазы напряжения и тока в реактивных элементах (катушке и конденсаторе), я даже для студентов своих стишок придумала:
  • «Каждый студент – запомни твердо!
  • От этого твой зависит зачет!
  • В емкости ток – опережает,
  • А в индуктивности – отстает!»
  • Ответ: 132

Задача 2. Катушка с ничтожно малым активным сопротивлением включена в  цепь переменного тока с частотой 50 Гц. При напряжении 125 В сила тока равна 3 А. Какова индуктивность катушки?
Определим  угловую частоту:

  1.     [omega=2pi 
u=6,28 cdot50=314]
  2. Индуктивное сопротивление катушки:
  3. По закону Ома:
  4.     Работа и мощность переменного тока - Справочник студента
  5.     Работа и мощность переменного тока - Справочник студента

Ответ: Гн.
Задача 3.  Амплитудные значения напряжения и тока на резисторе соответственно равны   В, А. Какая средняя мощность выделится  резисторе этой цепи?

Средняя мощность вычисляется по формуле:

    Работа и мощность переменного тока - Справочник студента

Где и – действующие значения тока и напряжения (они в раз меньше амплитудных), а – угол сдвига фаз напряжения и тока. Для резистора . Тогда

    Работа и мощность переменного тока - Справочник студента

Ответ: 100 Вт.

Задача 4. Напряжение на резисторе в цепи переменного тока изменяется по закону Работа и мощность переменного тока - Справочник студента, В. Чему равно действующее значение напряжения?

  • Действующие значения тока и напряжения  в раз меньше амплитудных:
  •     Работа и мощность переменного тока - Справочник студента
  •     Работа и мощность переменного тока - Справочник студента
  • Ответ: 100 В.

Задача 5. Найдите активное сопротивление электрической лампы, включенной в цепь переменного тока с действующим напряжением 220 В, если при этом на ней выделяется средняя мощность 200 Вт.

Источник: https://easy-physic.ru/peremennyj-tok/

Работа и мощность постоянного тока. Закон Джоуля-Ленца — Класс!ная физика

  • Работа тока — это работа электрического поля по переносу электрических зарядов вдоль проводника;
  • Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.
  • Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

Работа и мощность переменного тока - Справочник студента

  1. По закону сохранения энергии:
  2. работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.
  3. В системе СИ:

Работа и мощность переменного тока - Справочник студента

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

Работа и мощность переменного тока - Справочник студента

  • По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.
  • В системе СИ:
  • [Q] = 1 Дж
  • МОЩНОСТЬ ПОСТОЯННОГО ТОКА
  • — отношение работы тока за время t к этому интервалу времени.

Работа и мощность переменного тока - Справочник студента

В системе СИ:

Работа и мощность переменного тока - Справочник студента Следующая страница «Электрический ток в металлах. Сверхпроводимость» Назад в раздел «10-11 класс»

Электростатика и законы постоянного тока — Класс!ная физика

Электрический заряд. Электризация. Закон сохранения электрического заряда. Закон Кулона. Единица электрического заряда — Близкодействие и дальнодействие. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Силовые линии электрического поля — Проводники и диэлектрики в электростатическом поле.

Поляризация диэлектриков — Потенциальная энергия тела в электростатическом поле. Потенциал электростатического поля и разность потенциалов. Связь между напряженностью электростатического поля и разхностью потенциалов — Электроемкость. Конденсаторы. Энергия заряженного конденсатора — Электрический ток. Сила тока. Условия, необходимые для существования электрического тока.

Закон Ома для участка цепи. Сопротивление — Работа и мощность тока

Любознательным

Следы на песке

Если вам приходилось, гулять по пляжу во время отлива, то, вероятно, вы заметили, что, как только нога ступает на мокрый твердый песок, он немедленно подсыхает и белеет вокруг вашего следа.

Обычно это объясняют тем, что под тяжестью тела вода «выжимается» из песка. Однако это не так, потому что песок не ведет себя подобно мочалке.

Почему же белеет песок? Будет ли песок оставаться белым все время, пока вы стоите на месте? Оказывается…

Побеление песка на пляже впервые объяснил Рейнольде в 1885 г. Он показал, что объем песка увеличивается, когда на него наступают. До этого песчинки были «упакованы» самым плотным образом.

Под действием деформации сдвига, которая возникает под подошвой ботинка, объем, занимаемый песчинками, может лишь увеличиться. В то время как уровень песка поднимается резко, уровень воды может подняться лишь в результате капиллярных явлений, а на это требуется время.

Поэтому на дне следа ноги песок некоторое время оказывается выше уровня воды — он сухой и белый.

Источник: «Физический фейерверк» Дж. Уокер

Источник: http://class-fizika.ru/10_7.html

Мощность: цепи переменного и постоянного тока коэффициент мощности

В статье мы расскажем про мощность в цепи переменного и постоянного тока, а также мгновенную, активную, реактивную и полную мощность, а также что такое коэффициент мощности. Всех их формулы и примеры на нахождение мощности.

Мощность, генерируемая потоком через проводник тока I с напряжением U на его концах, выражается следующей формулой: 

Используя закон Ома, можно определить формулу для мощности с известными сопротивлением и напряжением: 

Аналогично, формула мощности может быть определена в зависимости от сопротивления и тока:

Задачи на нахождение мощности

Задача 1

Напряжение 5 В было измерено на концах резистора 10 Ом. Какая будет мощность? 

  • Решение:
  • Применить второе уравнение: Р = 5 2 /10 = 25/10 = 2,5 Вт 
  • Задача 2

Держатель лампы, несущий опорной мощности P = 21Вт при напряжении U = 12 В для подачи питания накала питания может быть использован со следующим параметры: U = 12В I max= 1А. Какой ток протекает при нормальной работе лампы? 

  1. Решение:
  2. Давайте посчитаем, какой ток протекает при нормальной работе лампы: 
  3. P = U * I I = P / U I = 21 Вт / 12 В 
  4. I = 1,75 A 

Это означает, что источник питания с заданными параметрами не подходит для питания этой лампы.

Мощность в цепи переменного тока

Мощность в цепи переменного тока в физики и обычной жизни одно из базовых понятий, которое нужно понимать перед началом работы с электроприборами. Далее вы увидите основные формулы мощности и их применение в задачах.

Мгновенная мощность

При рассмотрении энергетических процессов в цепях переменного тока удобно использовать разные типы энергии. Мгновенная мощность равна произведению мгновенных значений тока и напряжения на части цепи:

где: U и I — эффективные значения напряжения и тока, а φ и ω — соответственно разность фаз между током и напряжением и угловой частотой (пульсация).

Активная мощность

Активная мощность характеризуется текущими потерями энергии в течение 1 секунды в активных компонентах цепи (для нагрева, излучения или механических работ). Он измеряется в ваттах и ​​определяется мгновенным значением мощности за период:

Реактивная мощность

Реактивная мощность связана с реактивными сопротивлениями, которые периодически накапливают энергию, а затем возвращают ее источнику, но сами не поглощают энергию. Единица реактивной мощности вар. Реактивная мощность может быть определена по формуле:

  • Реактивная мощность положительна при токе, задержанном по отношению к напряжению (φ>0), и отрицательна при токе, который обгоняет напряжение (φ

Источник: https://meanders.ru/moshhnost-v-cepi-peremennogo-i-postojannogo-toka.shtml

Ссылка на основную публикацию