Резонанс токов — справочник студента

  • УЧЕТ  АКТИВНЫХ  ПРОВОДИМОСТЕЙ  ДЛЯ  ПОВЫШЕНИЯ  ТОЧНОСТИ  РАСЧЕТА  РЕЖИМА  РЕЗОНАНСА  ТОКОВ  В  СИСТЕМАХ  ЭЛЕКТРОСНАБЖЕНИЯ
  • Набиуллин  Рамиль  Анварович
  • студент  3  курса,  кафедра  электрическая  техника  ОмГТУ,  РФ,  г.  Омск
  • Е-mail tatarenok1992@mail.ru
  • Шумская  Надежда  Владимировна
  • магистрант  1  курса,  кафедра  электроснабжение  промышленных  предприятий  ОмГТУ,  РФ,  г.  Омск

Е-mail nadya.

shumskaya.1991@mail.ru

  1. Шаповалов  Павел  Васильевич
  2. магистрант  1  курса,  кафедра  электроснабжение  промышленных  предприятий  ОмГТУ,  РФ,  г.  Омск
  3. Е-mail
  4. » target=»_blank»>
  5. Кукарекин  Евгений  Александрович
  6. студент  3  курса,  кафедра  электрическая  техника
  7. ОмГТУ,  РФ,  г.  Омск
  8. Е-mail saraygaraj@mail.ru
  9. Осипов  Дмитрий  Сергеевич

научный  руководитель,  канд.  техн.  наук,  доцент  ОмГТУ,  РФ,  г.  Омск

Основным  условием  нормального  функционирования  и  безаварийной  работы  электронного  оборудования  является  качественное  напряжение  на  шинах  низкого  напряжения  (НН)  трансформаторов,  в  главных  распределительных  щитах  (ГРЩ)  и  в  поэтажных  электрощитах.

  При  этом  качество  питающего  напряжения  у  конечного  потребителя,  например  в  поэтажном  электрощите,  питающем  компьютерные  нагрузки,  обычно  хуже,  чем  качество  напряжения  в  главном  распределительном  электрощите  здания,  из-за  падения  напряжения  в  кабельной  линии,  питающей  этот  электрощит  [1;  2].

Одним  из  малоизученных  явлений,  влияющих  на  качество  питающего  напряжения,  в  том  числе  и  у  конечных  электропотребителей,  является  резонанс  токов  (параллельный  резонанс)  в  электроустановках  зданий.

  Это  опасное  явление  возникает  при  наличии  и  возрастании  доли  нелинейных  электропотребителей  (прежде  всего  «компью-терных»  и  аналогичных  им  нагрузок)  и  одновременном  практически  повсеместном  использовании  установок  компенсации  реактивной  мощности  (УКРМ),  подключенных  к  шинам  низкого  напряжения  трансформатора  [1].

При  соединении  параллельных  сетей  с  разнохарактерными  реактивными  сопротивлениями,  возникает  эффект  резонанса  токов.

Резонанс  будет  при  условии  равенства  нулю  суммой  реактивных  проводимостей  ветвей.  Рассмотрим  систему  электроснабжения,  представленную  на  рисунке  1.

Резонанс токов - Справочник студента

  • Рисунок  1.  Исследуемая  система  электроснабжения
  • где  С  —  система
  •   Т  —  трансформатор
  •   БСК  —  батарея  статических  конденсаторов
  •   Н1,  Н2  —  нагрузки  1  и2
  •   НН  —  нелинейная  нагрузка  (источник  гармоник)
  • Составим  схему  замещения  исследуемой  системы.

Резонанс токов - Справочник студента

  1. Рисунок  2.  Схема  замещения  для  расчета  параметров  система
  2. где:,  —  активное  и  индуктивное  сопротивление  трансформатора,  Ом
  3.   —  реактивное  сопротивление  БСК,  Ом
  4. ,  ,,    —  активное  и  реактивное  сопротивление  нагрузок  Н1  и  Н2  соответственно,  Ом
  5.     —  сопротивление  нелинейной  нагрузки  (источник  гармоник),  Ом
  6. Теперь  построим  схему  для  расчета  резонанса  исследуемой  системы.

Резонанс токов - Справочник студента

Рисунок  3.  Схема  замещения  для  расчета  резонанса

Выпишем  формулы  необходимые  для  расчета  проводимостей  исследуемой  система  электроснабжения:

Резонанс токов - Справочник студента
Резонанс токов - Справочник студента
Резонанс токов - Справочник студента
Резонанс токов - Справочник студента
Резонанс токов - Справочник студента

Зачастую  при  расчете  режима  резонансов  тока  пренебрегают  величинами  активного  сопротивления  входящих  в  формы  1—4.  Целью  данной  работы  является  определение  погрешности  в  определении  резонансной  частоты,  при  учете  и  пренебрежении  активного  сопротивлении.

Однако  при  исследовании  резонанса  токов  редко  принимаются  во  внимание  активные  составляющие  комплексных  сопротивлений  СЭС  и  изменение  параметров  нормального  режима  работы  системы.

  Известно,  что  полностью  «установившегося  режима»  реально  существовать  не  может.  Нагрузка  в  системе  колеблется:  непрерывно  происходят  малые  изменения  (флуктуации)  числа  подключенных  потребителей  –  их  мощности  и  состава.

  Подобные  изменения  могут  оказать  существенное  влияние  на  режим  резонанса  токов.  Кроме  того,  при  наличии  БСК  с  регулированием  количество  переменных  величин  в  уравнении  частоты  резонанса  увеличивается.

  На  примере  данной  работы  покажем  необходимость  учета  вышеперечисленных  факторов  для  расчета  и  моделирования  резонанса  токов  в  СЭС  [2].

P1 Q1 P2 Q2
140 130 250 40
  •   (6)
  •   (7)
  •   (8)
  • Построим  зависимости  отдельных  проводимостей  от  частоты.

Резонанс токов - Справочник студента

Рисунок  4.  График  зависимости  проводимости  l 1,  lbc  от  частоты

Резонанс токов - Справочник студента

  1. Рисунок  5.  График  зависимости  проводимости  трансформатора  от  частоты
  2. Рисунок  6.  График  зависимости  результирующей  проводимости  от  частоты
  3. Рисунок  7.  График  зависимости  результирующей  проводимости  от  частоты
  4. Вывод:   На  последнем  графике  видно,  что  результат  расчета  режима  резонансов  тока  с  учетом  активной  проводимости  больше  приблизительно  на  70  Гц,  чем  расчет  с  её  пренебрежением,  что  говорит  о  необходимости  учета  активной  проводимостью  в  расчете  резонанса  тока  при  необходимости  получения  точного  результата.
  5. Список  литературы:

1.Виктор  Петухов,  Игорь  Красилов  /  РЕЗОНАНСНЫЕ  ЯВЛЕНИЯ  В  ЭЛЕКТРОУСТАНОВКАХ  ЗДАНИЙ  как  фактор  снижения  качества  электроэнергии  //  Новости  Электротехники  —  2003  —  №  6.  —  [Электронный  ресурс]  —  Режим  доступа.  —  URL:  http://www.news.elteh.ru/arh/2003/24/20.php

2.Осипов  Д.С.,  Сиромаха  С.С.,  Черемисин  В.Т.  /  О  НЕОБХОДИМОСТИ  УЧЁТА  РЕЖИМА  РАБОТЫ  И  ИМПЕДАНСА  СИСТЕМЫ  ЭЛЕКТРОСНАБЖЕНИЯ  ПРИ  МОДЕЛИРОВАНИИ  РЕЗОНАНСА  ТОКОВ  //  Современные  проблемы  науки  и  образования  —  2014  —  №  5.  [Электронный  ресурс]  —  Режим  доступа.  —  URL:  http://www.science-education.ru/119-15252

Источник: https://sibac.info/studconf/tech/xxxi/41825

Последовательный колебательный контур

Последовательный колебательный контур – это цепь, состоящая их катушки индуктивности и конденсатора, которые соединяются последовательно.

Идеальный последовательный колебательный контур

  •  На схемах идеальный последовательный колебательный контур обозначается вот так:
  • Резонанс токов - Справочник студента
  • где
  • L – индуктивность, Гн
  • С – емкость, Ф

Реальный последовательный колебательный контур

Реальный колебательный контур имеет сопротивление потерь катушки и конденсатора. Это суммарное суммарное сопротивление потерь обозначается буквой R. В результате, реальный последовательный колебательный контур будет иметь такой вид:

  1. Резонанс токов - Справочник студента
  2. R  – это суммарное сопротивление потерь катушки и конденсатора
  3. L – собственно сама индуктивность катушки
  4. С – собственно сама емкость конденсатора

Принцип работы последовательного колебательного контура

Генератор частоты и последовательный колебательный контур

  • Давайте проведем классический эксперимент, который есть в каждом учебнике по электронике. Для этого соберем вот такую схему:
  • Резонанс токов - Справочник студента
  • Генератор (Ген)у нас будет выдавать синус.

Для того, чтобы снять осциллограмму силы тока через последовательный колебательный контур, мы подключим в схему шунтовый резистор с малым сопротивлением в 0,5 Ом и с него уже будем снимать напряжение. То есть в данном случае мы шунт используем для наблюдения силы тока в цепи.

  1. Резонанс токов - Справочник студента
  2. А вот и сама схема в реальности:
  3. Резонанс токов - Справочник студента

Слева-направо: шунтовый резистор, катушка индуктивности и конденсатор. Как вы уже поняли, сопротивление R – это суммарное сопротивление потерь катушки и конденсатора, так как нет идеальных радиоэлементов. Оно “прячется” внутри катушки и конденсатора, поэтому в реальной схеме отдельным радиоэлементом мы его не увидим.

Теперь нам осталось подцепить эту схему к генератору частоты и осциллографу, и прогнать по некоторым частотам, снимая осциллограмму с шунта Uш , а также снимая осциллограмму с самого генератора UГЕН .

Резонанс токов - Справочник студента

С шунта мы будем снимать напряжение, которое у нас отображает поведение силы тока в цепи, а с генератора собственно сам сигнал генератора. Давайте прогоним нашу схемку по некоторым частотам и глянем что есть что.

Влияние частоты генератора на сопротивление колебательного контура

В схеме я взял конденсатор на 1мкФ и катушку индуктивности на 1 мГн. На генераторе настраиваю синус размахом в 4 Вольта. Вспоминаем правило: если в цепи соединение радиоэлементов идет последовательно друг за другом, значит, через них течет одинаковая сила тока.

  • Красная осциллограмма – это напряжение с генератора частоты, а желтая осциллограмма – отображение силы тока через напряжение на шунтовом резисторе.
  • Частота 200 Герц с копейками:
  • Резонанс токов - Справочник студента
  • Как мы видим, при такой частоте ток в этой цепи есть, но очень слабый
  • Добавляем частоту. 600  Герц с копейками
  • Резонанс токов - Справочник студента

Здесь мы уже отчетливо видим, что сила тока возросла, а также видим, что осциллограмма силы тока опережает напряжение. Попахивает реактивным сопротивлением конденсатора.

  1. Добавляем частоту. 2 Килогерца
  2. Резонанс токов - Справочник студента
  3. Сила тока стала еще больше.
  4. 3 Килогерца
  5. Резонанс токов - Справочник студента

Сила тока увеличилась. Заметьте также, что сдвиг фаз стал уменьшаться.

4,25 Килогерц

Осциллограммы почти уже сливаются в одну. Сдвиг фаз между напряжением и силой тока становится почти незаметным.

И вот на какой-то частоте у нас сила тока стала максимальной, а сдвиг фаз стал равен нулю. Запомните этот момент. Для нас он будет очень важен.

Ну а давайте далее будем увеличивать частоту. Смотрим, что получается в итоге.

Еще совсем недавно ток опережал напряжение, а сейчас уже стал запаздывать после того, как выровнялся с ним по фазе. Так как ток уже отстает от напряжения, здесь уже попахивает реактивным сопротивлением катушки индуктивности.

  • Увеличиваем частоту еще больше
  • Сила тока начинает падать, а сдвиг фаз увеличивается.
  • 22 Килогерца
  • 74 Килогерца
  • Как вы видите, с увеличением частоты, сдвиг приближается к 90 градусов, а сила тока становится все меньше и меньше.

Резонанс последовательного колебательного контура

  1. Давайте подробнее рассмотрим тот самый момент, когда сдвиг фаз был равен нулю и сила тока, проходящая через последовательный колебательный, контур была максимальна:
  2. Это явление носит название резонанса.

Не будем углубляться  в теорию высшей математики и комплексных чисел.

Дело в том, что в этот самый момент реактивное сопротивление катушки и конденсатора становятся равными, но противоположными по знаку.

Поэтому, эти реактивные сопротивления как-бы вычитаются друг из друга, что в сумме дает ноль, и в цепи остается только активная составляющая сопротивления, то есть то самое паразитное сопротивление катушки и конденсатора, или иначе, сопротивление потерь R.

Читайте также:  Межкультурные различия в выражении эмоций - справочник студента

Как вы помните, если у нас сопротивление  становится малым, а в данном случае сопротивления потерь катушки и конденсатора очень маленькие, то в цепи начинает течь большая сила тока согласно закону Ома: I=U/R.

Если генератор мощный, то напряжение на нем не меняется, а сопротивление становится пренебрежимо малым и вуаля! Ток растет как грибы после дождя, что мы и увидели, посмотрев на желтую осциллограмму при резонансе.

Формула Томсона (резонанса) для последовательного колебательного контура

  • Если при резонансе у нас реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора XL=XC , то можно уравнять их реактивные сопротивления и уже отсюда вычислить частоту, на которой произошел резонанс. Итак, реактивное сопротивление катушки у нас выражается формулой:
  • Реактивное сопротивление конденсатора вычисляется по формуле:
  • Приравниваем обе части и вычисляем отсюда F:

В данном случае мы получили формулу резонансной частоты.

Это формула по другому называется формулой Томсона, как вы поняли, в честь ученого, который ее вывел.

Давайте по формуле Томсона посчитаем резонансную частоту нашего последовательного колебательного контура. Для этого я буду использовать свой RLC-транзисторметр.

  1. Замеряем индуктивность катушки:
  2. И замеряем нашу емкость:
  3. Высчитываем по формуле нашу резонансную частоту:
  4. У меня получилось 5, 09 Килогерц.
  5. С помощью  регулировки частоты и осциллографа я поймал резонанс на частоте 4,78 Килогерц (написано в нижнем левом углу)

Спишем погрешность в 200 с копейками Герц на погрешность измерений приборов. Как вы видите, формула Томпсона работает.

Резонанс напряжений

Давайте возьмем другие параметры катушки и конденсатора и посмотрим, что у нас происходит на самих радиоэлементах. Нам ведь надо досконально все выяснить ;-). Беру катушку индуктивности с индуктивностью в 22 микрогенри:

  • и конденсатор в 1000 пФ

Из них собираю последовательный колебательный контур. Итак, чтобы поймать резонанс, я не буду в схему добавлять резистор. Поступлю более хитрее.

Так как мой генератор частоты китайский и маломощный, то при резонансе у нас в цепи остается только активное сопротивление потерь R. В сумме получается все равно маленькое значение сопротивления, поэтому ток при резонансе достигает максимальных значений.

В результате этого, на внутреннем сопротивлении генератора частоты падает приличное напряжение и выдаваемая амплитуда частоты генератора  падает. Я буду ловить минимальное значение этой амплитуды. Следовательно это и будет резонанс колебательного контура.

Перегружать генератор – это не есть хорошо, но что не сделаешь ради науки!

Ну что же, приступим ;-). Давайте сначала посчитаем  резонансную частоту по формуле Томсона. Для этого я открываю онлайн калькулятор на просторах интернета и быстренько высчитываю эту частоту. У меня получилось 1,073 Мегагерц.

  1. Ловлю резонанс на генераторе частоты по его минимальным значениям амплитуды. Получилось как-то вот так:
  2. Размах амплитуды 4 Вольта

Хотя на генераторе частоты  размах  более 17 Вольт! Вот так вот сильно просело напряжение. И как видите, резонансная частота получилась чуток другая, чем расчетная: 1,109 Мегагерц.

  • Теперь небольшой прикол 😉
  • Вот этот сигнал мы подаем на наш последовательный колебательный контур:
  • Как видите, мой генератор не в силах выдать большую силу тока в колебательный контур на резонансной частоте, поэтому сигнал получился даже чуть искаженным на пиках.

Ну а теперь самое интересное. Давайте замеряем падение напряжения на конденсаторе и катушке на резонансной частоте. То есть это будет выглядеть вот так:

  1. Смотрим напряжение на конденсаторе:

Размах амплитуды 20 Вольт (5х4)! Откуда? Ведь подавали мы на колебательный контур синус с частотой в 2 Вольта!

Ладно, может с осциллографом что-то произошло?. Давайте замеряем напряжение на катушке:

Народ! Халява!!! Подали 2 Вольта с генератора, а получили 20 Вольт и на катушке и на конденсаторе! Выигрыш энергии в 10 раз! Успевай только снимать энергию с конденсатора или с катушки!

Ну ладно раз такое дело… беру лампочку от мопеда на 12 Вольт и цепляю ее к конденсатору или катушке. Лампочке ведь вроде как по-барабану на какой частоте работать и какой ток кушать. Выставляю амплитуду, чтобы на катушке или конденсаторе было где то Вольт 20 так как  среднеквадратичное напряжение  будет где-то Вольт 14,  и цепляю поочередно к ним лампочку:

Как видите – полный ноль. Лампочка гореть не собирается, так что побрейтесь фанаты халявной энергии).

Вы ведь не забыли, что мощность определяется произведением силы тока на напряжение? Напряжения вроде как-бы хватает, а вот силы тока – увы! Поэтому, последовательный колебательный контур носит также название узкополосного (резонансного) усилителя напряжения, а не мощности!

Объяснение резонанса напряжения

При резонансе напряжение на катушке и на конденсаторе оказались намного больше, чем то, которое мы подавали на колебательный контур. В данном случае у нас получилось в 10 раз больше.

Почему же напряжение на катушке при резонансе равняется напряжению на конденсаторе. Это легко объясняется.

Так как в последовательном колебательном контуре катушка и кондер идут друг за другом, следовательно, в цепи протекает одна и та же сила тока.

При резонансе реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора. Получаем по правилу шунта, что на катушке у нас падает напряжение UL = IXL , а на конденсаторе UC = IXC .

А так как при резонансе у нас XL = XC , то получаем что UL = UC , ток ведь в цепи один и тот же ;-).

Поэтому резонанс в последовательном колебательном контуре называют также резонансом напряжений, так как напряжение на катушке на резонансной частоте равняется напряжению на конденсаторе.

Добротность последовательного колебательного контура

Ну раз уж мы начали задвигать тему колебательных контуров, поэтому мы не можем обойти стороной такой параметр, как добротность колебательного контура. Так как мы уже провели некоторые опыты, то нам будет проще определить добротность, исходя из амплитуды напряжений. Добротность обозначается буквой Q и вычисляется по первой простой формуле:

  1. Давайте посчитаем добротность в нашем случае.
  2. Так как цена деления одного квадратика по вертикали 2 Вольта, следовательно, амплитуда сигнала  генератора частоты 2 Вольта.

А это то, что мы имеем на зажимах конденсатора или катушки. Здесь цена деления одного квадратика по вертикали 5 Вольт. Считаем квадратики и умножаем. 5х4=20 Вольт.

  • Считаем по формуле добротности:

Q=20/2=10. В принципе немного и не мало. Пойдет. Вот так вот на практике можно найти добротность.

  1. Есть также вторая формула для вычисления добротности.
  2. где
  3. R – сопротивление потерь в контуре, Ом
  4. L – индуктивность, Генри
  5. С – емкость, Фарад
  6. Зная добротность, можно легко найти сопротивление потерь R последовательного колебательного контура.

Также хочу добавить пару слов о добротности. Добротность контура – это качественный показатель колебательного контура. В основном его стараются всегда увеличить различными всевозможными способами.

Если взглянуть на формулу выше, то можно понять, для того, чтобы увеличить добротность, нам надо как-то уменьшить сопротивление потерь колебательного контура. Львиная доля потерь относится к катушке индуктивности, так как она уже конструктивно имеет большие потери.

Она намотана из провода и в большинстве случаев имеет сердечник. На высоких частотах в проводе начинает проявляться скин-эффект, который еще больше вносит потери в контур.

Резюме

Последовательный колебательный контур состоит из катушки индуктивности и конденсатора, соединенных последовательно.

Катушка и конденсатор имеют паразитные омические потери, так как не являются идеальными радиоэлементами. Сумма этих потерь называется сопротивлением потерь R последовательного колебательного контура.

На какой-то частоте реактивное сопротивление катушки становится равным реактивному сопротивлению конденсатора и в цепи последовательного колебательного контура наступает такое явление, как резонанс.

При резонансе реактивные сопротивления катушки и конденсатора хоть и равны по модулю, но противоположны по знаку, поэтому они вычитается и в сумме дают ноль. В цепи остается только активное сопротивление потерь R.

При резонансе сила тока в цепи становится максимальной, так как сопротивление потерь катушки и конденсатора R в сумме дают малое значение.

При резонансе напряжение на катушке равняется напряжению на конденсаторе и превышает напряжение на генераторе.

Коэффициент, показывающий во сколько раз напряжение на катушке либо на конденсаторе превышает напряжение на генераторе, называется добротностью Q последовательного колебательного контура и показывает качественную оценку колебательного контура. В основном стараются сделать Q как можно больше.

На низких частотах колебательный контур имеет емкостную составляющую тока до резонанса, а после резонанса – индуктивную составляющую тока.

Источник: https://www.RusElectronic.com/posledovatelnyj-kolebatelnyj-kontur/

Резонанс токов: в цепи переменного тока и напряжения

Многие люди, изучая электронику и все, что с ней связано, сталкиваются с таким понятием как резонанс токов. Что оно собой представляет, при каких условиях возникает резонанс токов, как используется и как его правильно подсчитать? Об этом далее.

Что это такое

Резонанс токов — разновидность состояния электрической цепи, когда общий вид токовых показателей совпадает по фазам уровню напряжения, а мощность реактивного вида равна нулю или же она представлена в активном виде.

Читайте также:  Требования к личности учителя в литературе - справочник студента

Резонанс токов - Справочник студента

. Резонанс токов

Этот вариант развития событий характерен для переменного тока и имеет не только положительные свойства, но и некоторые нежелательные последствия. Так, благодаря резонансу работает радиотехника, автоматика и проволочная телефония, но в то же время возникают перенапряжения и сбои в работе электрической системы.

Резонанс токов - Справочник студента

Определение из учебного пособия

При каких условиях возникает

Условием того, чтобы возникло это явление, является равные показатели проводниковой частоты, где BL=BC. То есть емкостная с индуктивной проводимостью должна быть равна. Только тогда подобное явление резонанса токов наблюдается в электрической цепи.

Он при этом может быть как положительным, так и отрицательным. В любом радиоприемнике есть колебательный контур, который из-за индуктивного или емкостного изменения, настраивается на нужный сигнал радиоволны.

В другом случае, это ведет к тому, что появляются скачки напряжения или ток в цепи и появляется аварийная ситуация.

В условиях лаборатории, он возникает во время, когда изменяется емкость и не изменяется индуктивность катушки L. В таком случае формула выглядит как Bc=C

Резонанс токов - Справочник студента

При каких условиях возникает

Как используется

Резонансные токи используются сегодня в некоторых фильтрующих системах, радиотехнике, электричестве, радиостанциях, асинхронных двигателях, высокоточных электрических сварных установках, колебательных генераторных электрических контурах и высокочастотных приборах. Нередко, когда они применяются, чтобы снизить генераторную нагрузку.

Резонанс токов - Справочник студента

Сфера применения

Принцип действия

Токовый резонанс можно заметить во внутренней поверхности электрической цепи, которая имеет параллельное катушечное, резисторное и конденсаторное подсоединение. Главный принцип того, как работает стандартный аппарат, не сложен в понимании.

Когда включается электрическое питание, внутри конденсаторной установки накапливается заряд до номинального напряжения. В этом время отключается питающий источник и замыкается цепь в контур. Этот момент сопровождается переносом разряда на часть катушки.

Далее показатели тока, которые проходят по катушке, генерируют магнитное поле. Создается электродвижущая самостоятельная индукционная сила по направлению встречному току. При полном конденсаторном разряде максимально увеличиваются токовые показатели. Объем энергии становится магнитным индукционным полем.

В результате данный цикл повторяется, и катушечное поле преобразовывается в конденсаторный заряд.

Резонанс токов - Справочник студента

Принцип работы

Как правильно рассчитать

Токовый резонанс очень важно правильно рассчитать, если есть параллельное соединение, предотвращающая появление помех около системы. Для правильного расчета необходимо понять, какие показатели мощности в электросети.

Средняя стандартная мощность, рассеивающаяся при резонансном контуре, выражается при помощи среднеквадратичных токовых показателей и напряжения.

При резонансе мощностный коэффициент равен единице и формула имеет вид, как на картинке.

Резонанс токов - Справочник студента

Формула расчета

Чтобы правильно определить нулевой импеданс, понадобиться воспользоваться стандартной формулой, которая дана ниже.

Резонанс токов - Справочник студента

Формула резонансных кривых

Что касается аппроксимирования резонанса колебательных частот, это можно выяснить по следующей формуле.

Резонанс токов - Справочник студента

Расчет колебательного контура

Обратите внимание! Для получения максимально точных данных по приведенным формулам, округлять данные не нужно. Благодаря этому получится грамотный расчет, который приведет к достойной экономии переменного тока, если речь идет о подсчете в целях снижения счетов.

В целом, резонанс токов — это то, что происходит в части параллельного колебательного контура, в случае его подключения к источнику напряжения, частота какого может совпадать с контурной.

Возникает при условиях, когда цепь, имеющая параллельное соединение резисторной катушки и конденсатора, равна проводимости BL=BC.

Правильно сделать весь необходимый подсчет можно по специальной формуле или, прибегая к использованию специальных измерительных инструментов в виде мультиметра.

Источник: https://rusenergetics.ru/ustroistvo/rezonans-tokov

Резонанс токов: применение, принцип резонса тока, расчет контура

Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Резонанс токов - Справочник студентаСоединение двух ветвей при резонансе

Признаки резонанса:

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь.

Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение.

Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость.

Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту.

Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Применение

Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор.

Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн.

Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

Принцип резонанса токов

Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:

Резонанс токов - Справочник студентаСхема для питания конденсатора

Переключатель будет отвечать за направление колебаний.

Резонанс токов - Справочник студентаСхема: переключатель резонансной схемы

Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.

Резонанс токов - Справочник студентаСхема: ток в резонансной схеме равен нулю

Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0.

Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны.

Если сопротивление достаточно высокой, ток не будет колебаться вообще.

Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

Расчет резонансного контура

Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

  • Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:
  • R ср= I2конт * R = (V2конт / Z2) * R.
  • При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1
  • Сама же формула резонанса имеет следующий вид:
  • ω0 = 1 / √L*C
  • Нулевой импеданс в резонансе определяется при помощи такой формулы:
  • Fрез = 1 / 2π √L*C
  • Резонансная частота колебаний может быть аппроксимирована следующим образом:
  • F = 1/2 р (LC) 0.5
  • Где: F = частота
  • L = индуктивность
  • C = емкость
  • Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:
  • R = 2 (L / C) 0.5

Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.

Источник: https://www.asutpp.ru/rezonans-peremennogo-elektricheskogo-toka.html

Резонанс токов в параллельном колебательном контуре — Основы электроники

Рассмотрим случай параллельного соединения колебательного контура с источником тока (рис. 1) и посмотрим, каково будет сопротивление контура для токов различных частот в этом случае.

Если частота тока невелика (ниже резонансной), то почти весь ток пойдет по наиболее легкому для него пути — через индуктивную ветвь; сопротивление контура при низких частотах будет небольшим по величине и индуктивным по своему характеру.

Для токов высоких частот (выше резонансной) более легким путем будет путь через емкостную ветвь, и, следовательно, сопротивление контура будет также небольшим по величине, но емкостным по характеру.

Читайте также:  Анализ функций управления - справочник студента

При резонансной частоте, когда емкостное сопротивление равно индуктивному, путь для тока будет одинаково трудным через обе ветви. Мы знаем, что при параллельном соединении двух равных сопротивлений общее сопротивление равняется половине любого из них. Поэтому, казалось бы, что сопротивление контура при резонансе должно равняться половине одного из реактивных сопротивлений.

Однако, не следует забывать, что мы имеет дело, с сопротивлениями, хотя и одинаковыми по величине, но имеющими принципиально различный характер. Это различие проявляется в том, что токи в индуктивной и емкостной ветвях контура сдвинуты по фазе друг относительно друга на 180°.

Отсюда непосредственно следует, что в неразветвленной части цепи всегда протекает не суммарный, а разностный ток (рис. 1).

Резонанс токов - Справочник студента

Рисунок 1. Токи при параллельном резонансе. В неразвлетвленной части цепи протекает не скммарный, а разностный ток.

Поэтому при резонансе, когда токи в емкостной и индуктивной ветвях равны между собой, ток в неразветвленной части цепи будет равен нулю, какое бы напряжение мы ни прилагали к контуру. При резонансе между точками АВ цепь будет казаться разорванной, т. е.

сопротивление ее между этими точками будет бесконечно велико, а отнюдь не будет равным половине одного из реактивных сопротивлений.

Практически бесконечно большого сопротивления контура при резонансе не бывает, так как из-за наличия активного сопротивления в контуре (сопротивление провода катушки) сдвиг фаз токов никогда не может быть равным точно 180°.

Однако активное сопротивление катушки обычно бывает много меньше ее индуктивного сопротивления, и поэтому сопротивление колебательного контура при резонансе может достигать очень больших величин.

Сопротивление колебательного контура при параллельном резонансе равно:

Резонанс токов - Справочник студента

где L выражено в гн, С—в ф, RL—в ом.

Полное сопротивление колебательного контура при резонансе является чисто активным в силу того обстоятельства, что индуктивное и емкостное сопротивления взаимно компенсируются.

Кривые изменения полного сопротивления колебательного контура между точками АВ при изменении частоты тока приведены на рис. 2,б.

Резонанс токов - Справочник студента

Рисунок 2. Резонанс токов. а) — схема и обозначения; б) — график полного сопротивления.

При параллельном резонансе токи ,в ветвях контура достигают наибольшей величины; поэтому параллельный резонанс называется резонансом токов.

Явление резонанса имеет огромнейшее значение в радиотехнике. На земном шаре имеется большое количество передающих радиостанций. Передачи всех этих радиостанций распространяются в эфипе и все одновременно принимаются приемной антенной.

Нетрудно представить себе, каким получилось бы нагромождение друг на друга передач, если бы мы не могли выделить из этого хаоса только одну нужную нам. Вот тут-то на помощь приходит явление резонанса.

Передающие радиостанции излучают в пространство электромагнитную энергию на различных частотах, мы же, настраивая контуры нашего приемника в резонанс с той или иной частотой, тем самым выбираем нужную нам передачу.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/rezonans-tokov-v-parallelnom-kolebatelnom-konture.html

§56. Резонанс напряжений и резонанс токов

Явление резонанса. Электрическая цепь, содержащая индуктивность и емкость, может служить колебательным контуром, где возникает процесс колебаний электрической энергии, переходящей из индуктивности в емкость и обратно. В идеальном колебательном контуре эти колебания будут незатухающими.

При подсоединении колебательного контура к источнику переменного тока угловая частота источника ? может оказаться равной угловой частоте ?0, с которой происходят колебания электрической энергии в контуре. В этом случае имеет место явление резонанса, т. е.

совпадения частоты свободных колебаний ?0, возникающих в какой-либо физической системе, с частотой вынужденных колебаний ?, сообщаемых этой системе внешними силами.

Резонанс в электрической цепи можно получить тремя способами: изменяя угловую частоту ? источника переменного тока, индуктивность L или емкость С.

Различают резонанс при последовательном соединении L и С — резонанс напряжений и при параллельном их соединении — резонанс токов.

Угловая частота ?0, при которой наступает резонанс, называется резонансной, или собственной частотой колебаний резонансного контура.

Резонанс токов - Справочник студента

Резонанс напряжений. При резонансе напряжений (рис. 196, а) индуктивное сопротивление XL равно емкостному Хс и полное сопротивление Z становится равным активному сопротивлению R:

Z = ?( R2 + [?0L — 1/(?0C)]2 ) = R

В этом случае напряжения на индуктивности UL и емкости Uc равны и находятся в противофазе (рис. 196,б), поэтому при сложении они компенсируют друг друга.

Если активное сопротивление цепи R невелико, ток в цепи резко возрастает, так как реактивное сопротивление цепи X = XL—Xс становится равным нулю. При этом ток I совпадает по фазе с напряжением U и I=U/R.

Резкое возрастание тока в цепи при резонансе напряжений вызывает такое же возрастание напряжений UL и Uc, причем их значения могут во много раз превышать напряжение U источника, питающего цепь.

Угловая частота ?0, при которой имеют место условия резонанса, определяется из равенства ?oL = 1/(?0С).

Рис. 196. Схема (а) и векторная диаграмма (б) электрической цепи, содержащей R, L и С, при резонансе напряжений

Отсюда имеем

?o = 1/?(LC) (74)

Если плавно изменять угловую частоту ? источника, то полное сопротивление Z сначала начинает уменьшаться, достигает наименьшего значения при резонансе напряжений (при ?o), а затем увеличивается (рис. 197, а). В соответствии с этим ток I в цепи сначала возрастает, достигает наибольшего значения при резонансе, а затем уменьшается.

Резонанс токов. Резонанс токов может возникнуть при параллельном соединении индуктивности и емкости (рис. 198, а). В идеальном случае, когда в параллельных ветвях отсутствует активное сопротивление (R1=R2 = 0), условием резонанса токов является равенство реактивных сопротивлений ветвей, содержащих индуктивность и емкость, т. е.

?oL = 1/(?oC). Так как в рассматриваемом случае активная проводимость G = 0, ток в неразветвленной части
цепи при резонансе I=U?(G2+(BL-BC)2)= 0. Значения токов в ветвях I1 и I2 будут равны (рис.

198,б), но токи будут сдвинуты по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в емкости I с опережает напряжение U на 90°). Следовательно, такой резонансный контур представляет собой для тока I бесконечно большое сопротивление и электрическая энергия в контур от источника не поступает.

В то же время внутри контура протекают токи IL и Iс, т. е. имеет место процесс непрерывного обмена энергией внутри контура. Эта энергия переходит из индуктивности в емкость и обратно.

Как следует из формулы (74), изменяя значения емкости С или индуктивности L, можно изменять частоту колебаний ?0 электрической энергии и тока в контуре, т. е. осуществлять настройку контура на требуемую частоту.

Если бы в ветвях, в которых включены индуктивность и емкость, не было активного сопротивления, этот процесс колебания энергии продолжался бы бесконечно долго, т. е. в контуре возникли бы незатухающие колебания энергии и токов IL и Iс.

Однако реальные катушки индуктивности и конденсаторы всегда поглощают электрическую энергию (из-за наличия в катушках активного сопротивления проводов и возникновения

Рис. 197. Зависимость тока I и полного сопротивления Z от ? для последовательной (а) и параллельной (б) цепей переменного тока

Рис. 198. Электрическая схема (а) и векторные диаграммы (б и в) при резонансе токов

в конденсаторах токов смещения, нагревающих диэлектрик), поэтому в реальный контур при резонансе токов поступает от источника некоторая электрическая энергия и по неразветвленной части цепи протекает некоторый ток I.

Условием резонанса в реальном резонансном контуре, содержащем активные сопротивления R1 и R2, будет равенство реактивных проводимостей BL = BC ветвей, в которые включены индуктивность и емкость.

Из рис. 198, в следует, что ток I в неразветвленной части цепи совпадает по фазе с напряжением U, так как реактивные токи 1L и Iс равны, но противоположны по фазе, вследствие чего их векторная сумма равна нулю.

Если в рассматриваемой параллельной цепи изменять частоту ?о источника переменного тока, то полное сопротивление цепи начинает увеличиваться, достигает наибольшего значения при резонансе, а затем уменьшается (см. рис. 197,б). В соответствии с этим ток I начинает уменьшаться, достигает наименьшего значения Imin = Ia при резонансе, а затем увеличивается.

В реальных колебательных контурах, содержащих активное сопротивление, каждое колебание тока сопровождается потерями энергии.

В результате сообщенная контуру энергия довольно быстро расходуется и колебания тока постепенно затухают. Для получения незатухающих колебаний необходимо все время пополнять потери энергии в активном сопротивлении, т. е.

такой контур должен быть подключен к источнику переменного тока соответствующей частоты ?0.

Явления резонанса напряжения и тока и колебательный контур получили весьма широкое применение в радиотехнике и высокочастотных установках. При помощи колебательных контуров мы получаем токи высокой частоты в различных радиоустройствах и высокочастотных генераторах.

Колебательный контур — важнейший элемент любого радиоприемника. Он обеспечивает его избирательность, т. е. способность выделять из радиосигналов с различной длиной волны (т. е. с различной частотой), посланных различными радиостанциями, сигналы определенной радиостанции.

Резонанс токов - Справочник студента

Источник: https://electrono.ru/peremennyj-tok/56-rezonans-napryazhenij-i-rezonans-tokov

Ссылка на основную публикацию
Adblock
detector