Доверительные интервалы для оценки среднего квадратического отклонения — справочник студента

2.2.3. Доверительный интервал для оценки

среднего квадратического отклонения нормального распределения

1. Если неизвестно, то доверительный интервал для оценки имеет вид:

Доверительные интервалы для оценки среднего квадратического отклонения - Справочник студента

где — объем выборки; — исправленное среднее квадратическое отклонение:

Доверительные интервалы для оценки среднего квадратического отклонения - Справочник студента

Доверительные интервалы для оценки среднего квадратического отклонения - Справочник студента , Доверительные интервалы для оценки среднего квадратического отклонения - Справочник студента — квантили- распределения, определяемые по таблице (Приложение 3)

при и , .

Пример 8. Для оценки параметра нормально распределенной случайной величины была сделана выборка объема в 25 единиц и вычислено .

Найти доверительный интервал, покрывающий с вероятностью .

¦ Имеем , .

Доверительные интервалы для оценки среднего квадратического отклонения - Справочник студентаДоверительные интервалы для оценки среднего квадратического отклонения - Справочник студента

Доверительный интервал имеет вид:

Доверительные интервалы для оценки среднего квадратического отклонения - Справочник студента

2. Другой вид доверительного интервала для оценки нормального распределения имеет вид:

Доверительные интервалы для оценки среднего квадратического отклонения - Справочник студентаДоверительные интервалы для оценки среднего квадратического отклонения - Справочник студента

где — исправленное среднее квадратическое отклонение;

находим по таблице значений (Приложение 5).

Пример 9. Для оценки параметра нормально распределенной случайной величины была сделана выборка объема в 25 единиц и вычислено .

  • Найти доверительный интервал, покрывающий с вероятностью .
  • ¦ Имеем , ,
  • По таблице значений находим .
  • Доверительный интервал имеет вид:

Доверительные интервалы для оценки среднего квадратического отклонения - Справочник студента

Замечание. Доверительные интервалы в примерах 8 и 9 получили разные при одинаковых данных, но они с вероятностью покрывают среднее квадратическое отклонение .

  1. § 3. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТИЗ
  2. Статистической гипотезой называется всякое высказывание о генеральной совокупности (случайной величине), проверяемое по выборке (то есть по результатам наблюдений).
  3. Примеры статистических гипотез:
  4. — математическое ожидание случайной величины равно конкретному числовому значению;
  5. — генеральная совокупность распределена по нормальному закону.
  6. Гипотезы могут быть параметрические (гипотезы о параметрах распределения известного вида) и непараметрические (гипотезы о виде неизвестного распределения).
  7. Различают гипотезы простые, содержащие только одно предположение, и сложные, содержащие более одного предположения.
  8. Например, гипотеза — простая;
  9. а гипотеза : , ( где ) – сложная гипотеза, потому что она состоит из бесконечного множества простых гипотез.

Процедура сопоставления гипотезы с выборочными данными называется проверкой гипотезы. Для проверки гипотез используют аналитические и статистические методы.

3.1. Классический метод проверки гипотез

В соответствии с поставленной задачей и на основании выборочных данных формулируется (выдвигается) гипотеза , которая называется основной или нулевой. Одновременно с выдвинутой гипотезой , рассматривается противоположная ей гипотеза , которая называется конкурирующей или альтернативной.

Для проверки нулевой гипотезы вводят специально подобранную случайную величину , распределение которой известно и называют ее критерием.

Поскольку гипотеза для генеральной совокупности принимается по выборочным данным, то она может быть ошибочной. При этом возможны ошибки двух родов.

  • Ошибка первого рода состоит в том, что отвергается гипотеза , когда она на самом деле верна.
  • Ошибка второго рода состоит в том, что отвергается альтернативная гипотеза , когда она на самом деле верна.
  • 1) Для определения вероятности ошибки первого рода вводится параметр :
  • — вероятность того, что будет принята гипотеза , при условии, что верна.

Величину называют уровнем значимости. Обычно выбирают в пределах .

  1. 2) Вероятность ошибки второго рода определяется параметром :
  2. — вероятность того, что будет принята гипотеза , при условии, что верна.
  3. Величину , то есть недопустимость ошибки второго рода (отвергнуть неверную и принять верную гипотезу ) называют мощностью критерия.

3.2. Сущность метода

  • Множество всех значений критерия разбивают на два непересекающихся подмножества: одно из них содержит значения критерия, при которых нулевая гипотеза отвергается; другое – при которых она принимается.
  • Критической областью называется совокупность значений критерия, при которых нулевую гипотезу отвергают.
  • Областью принятия гипотезы (областью допустимых значений) называется совокупность значений критерия, при которых нулевую гипотезу принимают.
  • Обозначим критическую область .

Если вычисленное по выборке значение критерия попадает в критическую область , то гипотеза отвергается и принимается гипотеза . В этом случае можно совершить ошибку первого рода, вероятность которой равна . Иначе, вероятность того, что критерий примет значение из критической области , должна быть равна заданному значению , то есть.

Критическая область определяется неоднозначно. Возможны три случая расположения . Они определяются видом нулевой и альтернативной гипотез и законом распределения критерия .

Правосторонняя критическая область (рис.4 а) состоит из интервала , где определяется из условия и называется правосторонней точкой, отвечающей уровню значимости .

Левосторонняя критическая область (рис.4 б) состоит из интервала , где определяется из условия и называется левосторонней точкой, отвечающей уровню значимости .

  1. Двусторонняя критическая область (рис.4 в) состоит из следующих двух интервалов: и , где точки и определяются из условий и
  2. и называются двусторонними критическими точками.
  3. Рис.4

3.3. Алгоритм проверки нулевой гипотезы

  1. Располагая выборкой, формулируют нулевую гипотезу и альтернативную гипотезу .

  2. Выбирают критерий проверки гипотезы , зависящий от выборочных данных и условий рассматриваемой задачи. Наиболее часто используют случайные величины, имеющие следующие законы распределения: нормальный, Стъюдента, Фишера-Снедекора, хи-квадрат.

  3. Задают уровень значимости выбранного критерия и определяют соответствующую ему критическую область. Для определения критической области достаточно найти критическую точку — ее границу. Для каждого критерия имеются таблицы, по которым находят критическую точку.

  4. Вычисляют значение критерия по результатам произведенных измерений и сравнивают с критической точкой.

  5. Нулевую гипотезу отвергают, если вычисленное значение критерия попадает в критическую область, или считают справедливой, если оно окажется внутри области допустимых значений.

Читайте также:  Что такое психика, душа, внутренний мир человека - справочник студента

3.4. Проверка гипотез о законе распределения

  • Во многих случаях закон распределения изучаемой случайной величины неизвестен, но есть основания предположить, что он имеет вполне определенный вид: нормальный, экспоненциальный или какой-либо другой.
  • Пусть выдвинута гипотеза о каком-либо законе распределения.
  • Для проверки этой гипотезы требуется по выборке сделать заключение, согласуются ли результаты наблюдений с высказанным предположением.
  • Статистический критерий проверки гипотезы о предполагаемом законе неизвестного распределения называется критерием согласия.
  • Он используется для проверки согласия предполагаемого вида распределения с опытными данными на основании выборки.

Существуют различные критерии согласия: Пирсона, Колмогорова, Фишера и другие. Наиболее часто применяется критерий Пирсона.

3.5. Проверка гипотезы

  1. о нормальном распределении генеральной совокупности
  2. по критерию Пирсона
  3. Пусть выборка из генеральной совокупности задана в виде статистического интервального ряда ряда:

где — интервальные частоты, — объем выборки,

— число интервалов, — длина интервала, — середина интервала.

Требуется проверить гипотезу о том, что генеральная совокупность распределена по нормальному закону, применяя критерий Пирсона. (К.Пирсон, 1857-1936 г; английский математик, биолог, философ).

Правило проверки

1. Вычисляем и ( см. Пример 5).

2. Находим теоретические частоты .

  • Их можно вычислить двумя способами.
  • Первый способ
  • ,
  • где — объем выборки, — шаг, ;
  • — функция Гаусса, значение которой в точке
  • находим по таблице (Приложение 1).
  • — вероятность попадания значений случайной
  • величины в — й интервал.

Для вычисления составляем табл. 9.

Таблица 9

1
  1. Второй способ.
  2. где — объем выборки, ,
  3. — вероятность попадания в — й интервал,
  4. — значение функции Лапласа (Приложение 2).
  5. Полагают , .

Для вычисления составляем табл. 10.

Таблица 10

Границы интервала Границы интервала
1 -0,5
0,5
1

3. Сравниваем эмпирические ( ) и теоретические () частоты с помощью критерия Пирсона.

Источник: https://textarchive.ru/c-2967347-p4.html

CFA — Доверительные интервалы для среднего значения совокупности

  • (продолжение)
  • см. начало:
  • CFA — Точечные оценки среднего значения совокупности.

Когда нам нужно получить одно число в качестве оценки параметра совокупности, мы используем точечную оценку. Тем не менее, из-за ошибки выборки, точечная оценка не будет в точности равняться параметру совокупности при любом размере данной выборки.

Часто, вместо точечной оценки, более полезным подходом будет найти диапазон значений, в рамках которого, как мы ожидаем, может находится значение искомого параметра с заданным уровнем вероятности.

Этот подход называется интервальной оценкой параметра (англ. 'interval estimate of parameter'), а доверительный интервал выполняет роль этого диапазона значений.

Определение доверительного интервала

Доверительный интервал (англ. 'confidence interval') представляет собой диапазон, для которого можно утверждать, с заданной вероятностью (1 — alpha ), называемой степенью доверия (или степенью уверенности, англ. 'degree of confidence'), что он будет содержать оцениваемый параметр.

Этот интервал часто упоминается как (100 (1 — alpha)\% ) доверительный интервал для параметра.

Конечные значения доверительного интервала называются нижним и верхним доверительными пределами (или доверительными границами или предельной погрешностью, англ. 'lower/upper confidence limits').

В этом чтении, мы имеем дело только с двусторонними доверительными интервалами — доверительные интервалами, для которых мы вычисляем и нижние и верхние пределы.

Кроме того, можно определить два типа односторонних доверительных интервалов для параметра совокупности.

Нижний односторонний доверительный интервал устанавливает только нижний предел. Это означает допущение, что с определенной степенью доверия параметр совокупности равен или превышает нижний предел.

Верхний односторонний доверительный интервал устанавливает только верхний предел. Это означает допущение, что с определенной степенью доверия параметр совокупности меньше или равен верхнему пределу.

Инвестиционные аналитики редко используют односторонние доверительные интервалы.

  1. Доверительные интервалы часто дают либо вероятностную интерпретацию, либо практическую интерпретацию.
  2. При вероятностной интерпретации, мы интерпретируем 95%-ный доверительный интервал для среднего значения совокупности следующим образом.
  3. При повторяющейся выборке, 95% таких доверительных интервалов будут, в конечном счете, включать в себя среднее значение совокупности.
  4. Например, предположим, что мы делаем выборку из совокупности 1000 раз, и на основании каждой выборки мы построим 95%-ный доверительный интервал, используя вычисленное выборочное среднее.
  5. Из-за случайного характера выборок, эти доверительные интервалы отличаются друг от друга, но мы ожидаем, что 95% (или 950) этих интервалов включают неизвестное значение среднего по совокупности.

На практике мы обычно не делаем такие повторяющиеся выборки. Поэтому в практической интерпретации, мы утверждаем, что мы 95% уверены в том, что один 95%-ный доверительный интервал содержит среднее по совокупности.

Мы вправе сделать это заявление, потому что мы знаем, что 95% всех возможных доверительных интервалов, построенных аналогичным образом, будут содержать среднее по совокупности.

Доверительные интервалы, которые мы обсудим в этом чтении, имеют структуры, подобные описанной ниже базовой структуре.

Построение доверительных интервалов

  • Доверительный интервал (100 (1 — alpha)\% ) для параметра имеет следующую структуру.
  • Точечная оценка (pm) Фактор надежности ( imes) Стандартная ошибка
  • где
  • Точечная оценка = точечная оценка параметра (значение выборочной статистики).
  • Фактор надежности (англ. 'reliability factor') = коэффициент, основанный на предполагаемом распределении точечной оценки и степени доверия ((1 — alpha)) для доверительного интервала.
  • Стандартная ошибка = стандартная ошибка выборочной статистики, значение которой получено с помощью точечной оценки.
Читайте также:  Испарение и конденсация - справочник студента

Величину (Фактор надежности) ( imes) (Cтандартная ошибка) иногда называют точностью оценки (англ. 'precision of estimator').

Большие значения этой величины подразумевают более низкую точность оценки параметра совокупности.

Самый базовый доверительный интервал для среднего значения по совокупности появляется тогда, когда мы делаем выборку из нормального распределения с известной дисперсией. Фактор надежности в данном случае на основан стандартном нормальном распределении, которое имеет среднее значение, равное 0 и дисперсию 1.

Стандартная нормальная случайная величина обычно обозначается как (Z). Обозначение (z_alpha ) обозначает такую точку стандартного нормального распределения, в которой (alpha) вероятности остается в правом хвосте.

Например, 0.05 или 5% возможных значений стандартной нормальной случайной величины больше, чем ( z_{0.05} = 1.65 ).

Предположим, что мы хотим построить 95%-ный доверительный интервал для среднего по совокупности, и для этой цели, мы сделали выборку размером 100 из нормально распределенной совокупности с известной дисперсией (sigma^2) = 400 (значит, (sigma) = 20).

Мы рассчитываем выборочное среднее как ( overline X = 25 ). Наша точечная оценка среднего по совокупности, таким образом, 25.

Если мы перемещаем 1.96 стандартных отклонений выше среднего значения нормального распределения, то 0.025 или 2.5% вероятности остается в правом хвосте. В силу симметрии нормального распределения, если мы перемещаем 1.96 стандартных отклонений ниже среднего, то 0.025 или 2.5% вероятности остается в левом хвосте.

В общей сложности, 0.05 или 5% вероятности лежит в двух хвостах и 0.95 или 95% вероятности лежит между ними.

Таким образом, ( z_{0.025} = 1.96) является фактором надежности для этого 95%-ного доверительного интервала. Обратите внимание на связь (100 (1 — alpha)\% ) для доверительного интервала и (z_{alpha/2}) для фактора надежности.

Стандартная ошибка среднего значения выборки, заданная Формулой 1, равна ( sigma_{overline X} = 20 Big / sqrt{100} = 2 ).

Доверительный интервал, таким образом, имеет нижний предел ( overline X — 1.96 sigma_{overline X} ) = 25 — 1.96(2) = 25 — 3.92 = 21.08.

Верхний предел доверительного интервала равен ( overline X + 1.96sigma_{overline X} ) = 25 + 1.96(2) = 25 + 3.92 = 28.92.

95%-ный доверительный интервал для среднего по совокупности охватывает значения от 21.08 до 28.92.

Доверительные интервалы для среднего по совокупности (нормально распределенная совокупность с известной дисперсией)

  1. Доверительный интервал (100 (1 — alpha)\% ) для среднего по совокупности ( mu ), когда мы делаем выборку из нормального распределения с известной дисперсией ( sigma^2 ) задается формулой:
  2. ( Large { overline X pm z_{alpha /2}{sigma over sqrt n} } ) (Формула 4)
  3. Факторы надежности для наиболее часто используемых доверительных интервалов приведены ниже.

Факторы надежности для доверительных интервалов на основе стандартного нормального распределения

Мы используем следующие факторы надежности при построении доверительных интервалов на основе стандартного нормального распределения:

  • 90%-ные доверительные интервалы: используется (z_{0.05}) = 1.65
  • 95%-ные доверительные интервалы: используется (z_{0.025}) = 1.96
  • 99%-ные доверительные интервалы: используется (z_{0.005}) = 2.58

На практике, большинство финансовых аналитиков используют значения для (z_{0.05}) и (z_{0.005}), округленные до двух знаков после запятой.

Для справки, более точными значениями для (z_{0.05}) и (z_{0.005}) являются 1.645 и 2.575, соответственно.

Для быстрого расчета 95%-ного доверительного интервала (z_{0.025}) иногда округляют 1.96 до 2.

Эти факторы надежности подчеркивают важный факт о всех доверительных интервалах. По мере того, как мы повышаем степень доверия, доверительный интервал становится все шире и дает нам менее точную информацию о величине, которую мы хотим оценить.

«Чем уверенней мы хотим быть, тем меньше мы должны быть уверены»

см. Freund и Williams (1977), стр. 266.

На практике, допущение о том, что выборочное распределение выборочного среднего, по меньшей мере, приблизительно нормальное, часто является обоснованным, либо потому, что исходное распределение приблизительно нормальное, либо потому что мы имеем большую выборку и поэтому к ней применима центральная предельная теорема.

Однако, на практике, мы редко знаем дисперсию совокупности. Когда дисперсия генеральной совокупности неизвестна, но выборочное среднее, по меньшей мере, приблизительно нормально распределено, у нас есть два приемлемых пути чтобы вычислить доверительные интервалы для среднего значения совокупности.

Вскоре мы обсудим более консервативный подход, который основан на t-распределении Стьюдента (t-распределение, для краткости).

Распределение статистики (t) называется t-распределением Стьюдента (англ. «Student's t-distribution») из-за псевдонима «Студент» (Student), использованного британским математиком Уильямом Сили Госсеттом, который опубликовал свою работу в 1908 году.

В финансовой литературе, это наиболее часто используемый подход для статистической оценки и проверки статистических гипотез, касающихся среднего значения, когда дисперсия генеральной совокупности не известна, как для малого, так и для большого размер выборки.

Второй подход к доверительным интервалам для среднего по совокупности, основанного на стандартном нормальном распределении, — это z-альтернатива (англ. 'z-alternative'). Он может быть использован только тогда, когда размер выборки является большим (в общем случае, размер выборки 30 или больше, можно считать большим).

Читайте также:  Функции - справочник студента

В отличии от доверительного интервала, приведенного в Формуле 4, этот доверительный интервал использует стандартное отклонение выборки (s) при вычислении стандартной ошибки выборочного среднего (по Формуле 2).

Доверительные интервалы для среднего по совокупности — z-альтернатива (большая выборка, дисперсия совокупности неизвестна)

  • Доверительный интервал (100 (1 — alpha)\% ) для среднего по совокупности ( mu ) при выборке из любого распределения с неизвестной дисперсией, когда размер выборки большой, задается формулой:
  • ( Large { overline X pm z_{alpha /2}{s over sqrt n} } ) (Формула 5)
  • Поскольку этот тип доверительного интервала применяется довольно часто, мы проиллюстрируем его вычисление в Примере 4.

Пример (4) расчета доверительного интервала для среднего по совокупности коэффициентов Шарпа с использованием z-статистики

Предположим, что инвестиционный аналитик делает случайную выборку акций взаимных фондов США и рассчитывает средний коэффициент Шарпа.

[см. также: CFA — Коэффициент Шарпа]

Размер выборки равен 100, а средний коэффициент Шарпа составляет 0.45. Выборка имеет стандартное отклонение 0.30.

Рассчитайте и интерпретируйте 90-процентный доверительный интервал для среднего по совокупности всех акций взаимных фондов США с использованием фактора надежности на основе стандартного нормального распределения.

Фактор надежности для 90-процентного доверительного интервала, как указано ранее, составляет ( z_{0.05} = 1.65 ).

Доверительный интервал будет равен:

Источник: https://fin-accounting.ru/cfa/l1/quantitative/cfa-confidence-intervals-for-population-mean

Доверительный интервал для оценки дисперсии в EXCEL

Построим доверительный интервал для оценки дисперсии случайной величины, распределенной по нормальному закону, в MS EXCEL .

Построение доверительного интервала для оценки среднего приведено в статье Доверительный интервал для оценки среднего (дисперсия известна) в MS EXCEL . Процедура построения доверительного интервала для оценки дисперсии имеет много общего с процедурой для оценки среднего , поэтому в этой статье она изложена менее подробно, чем в указанной статье.

Формулировка задачи. Предположим, что из генеральной совокупности имеющей нормальное распределение с неизвестным средним значением μ и неизвестной дисперсией σ 2 взята выборка размера n. Необходимо на основании этой выборки оценить дисперсию распределения и построить доверительный интервал .

Примечание : Построение доверительного интервала для оценки среднего относительно нечувствительно к отклонению генеральной совокупности от нормального закона . А вот при построении доверительного интервала для оценки дисперсии требование нормальности является строгим.

СОВЕТ : Для построения Доверительного интервала нам потребуется знание следующих понятий:

В качестве точечной оценкой дисперсии распределения, из которого взята выборка , используют Дисперсию выборки s 2 .

Также, перед процедурой проверки гипотезы , исследователь устанавливает требуемый уровень значимости – это допустимая для данной задачи ошибка первого рода , т.е. вероятность отклонить нулевую гипотезу , когда она верна ( уровень значимости обозначают буквой α (альфа) и чаще всего выбирают равным 0,1; 0,05 или 0,01)

В статье про ХИ2-распределение показано, что выборочное распределение статистики y=(n-1) s 2 /σ 2 , имеет ХИ2-распределение с n-1 степенью свободы.

Воспользуемся этим свойством и построим двухсторонний доверительный интервал для оценки дисперсии :

где χ 2 α/2,n-1 – верхний α/2-квантиль распределения ХИ-квадрат с n -1 степенью свободы ( такое значение случайной величины χ 2 n-1 , что P ( χ 2 n-1 >= χ 2 α/2,n-1 )=α/2) . Чтобы найти этот квантиль в MS EXCEL используйте формулу =ХИ2.ОБР.ПХ(α; n-1) . χ 2 1-α/2,n-1 – верхний 1-α/2-квантиль , который равен нижнему α/2- квантилю. Чтобы найти этот квантиль в MS EXCEL используйте формулу =ХИ2.ОБР(α; n-1) .

Примечание : В файле примера на листе Квантили показан расчет квантилей для распределения ХИ2 . На рисунке выделена область соответствующая уровню доверия 95%, которая ограничена верхним и нижним квантилем .

Обратите внимание, что в отличие от нормального и t-распределения распределение ХИ2 несимметрично, поэтому для двустороннего доверительного интервала потребуется вычислить два квантиля , значения которых будут отличаться.

  • Примечание : Доверительный интервал для стандартного отклонения может быть получен путем извлечения квадратного корня из вышеуказанного выражения.
  • В файле примера на листе 2х сторонний создана форма для расчета и построения двухстороннего доверительного интервала .
  • Для построения односторонних доверительных интервалов используйте нижеследующие выражения:

Задача

В следующей задаче найдем верхний односторонний доверительный интервал для дисперсии .

Автоматический аппарат заполняет емкости с растворителем. Предполагается, что объемы налитой жидкости в емкостях распределены по нормальному закону .

Если разброс значений объемов будет слишком велик, то значительная часть емкостей будет существенно переполнена или не заполнена. Для оценки дисперсии в качестве выборки взято 20 наполненных жидкостью емкостей.

На основе выборки была вычислена дисперсия выборки s 2 , которая составила 0,0153 (литров 2 ). Принято решение оценить верхний уровень дисперсии с уровнем доверия 95%.

Для решения задачи воспользуемся выражением

Сначала найдем верхний (1-α)-квантиль (или равный ему нижний α-квантиль ) ХИ2-распределения с n-1 степенью свободы при у ровне значимости α равном 1-0,95=0,05. Это можно сделать в MS EXCEL по формулам: =ХИ2.ОБР.ПХ(1-0,05; 20-1) или =ХИ2.ОБР(0,05; 20-1)

  1. В результате получим верхний доверительный интервал для дисперсии: σ 2

Источник: https://excel2.ru/articles/doveritelnyy-interval-dlya-ocenki-dispersii-v-ms-excel

Ссылка на основную публикацию
Adblock
detector