Закон ома для замкнутой цепи — справочник студента

Замкнутая (полная) электрическая цепь состоит из источника тока и сопротивления.

Закон Ома для замкнутой цепи - Справочник студента

Источник тока имеет ЭДС ( ) и сопротивление (r), которое называют внутренним. ЭДС (электродвижущая сила) — работа сторонних сил по перемещению положительного заряда по замкнутой цепи (физический смысл аналогичен напряжению, потенциалу). Полное сопротивление цепи — R+r.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!
  • Закон Ома для замкнутой цепи - Справочник студента
  • 1) Напряжение на зажимах источника, а соответственно и во внешней цепи
  • Закон Ома для замкнутой цепи - Справочник студента , где величина — падение напряжения внутри источника тока.
  • 2) Если внешнее сопротивление замкнутой цепи равно нулю, то такой режим источника тока называется коротким замыканием.

Закон Ома для замкнутой цепи - Справочник студента

Работа и мощность тока. КПД источника тока. Закон Джоуля–Ленца.

Рассмотрим однородный участок 1−2 проводника, к которому приложена разность потенциалов ϕ2 − ϕ1. Если по проводнику течет ток I, то за время dt через поперечное сечение его будет перенесен заряд dq = Idt.

  1. Следовательно, силы поля совершат элементарную работу
  2. δA = dq(ϕ2− ϕ1) = I(ϕ2 − ϕ1)dt = IUdt.
  3. Полезная работа на всем участке 1− 2

Закон Ома для замкнутой цепи - Справочник студента

  • Если электрическая цепь замкнута и содержит источника с ЭДС , то вся затраченная источником тока работа АЗ = АП + АВНУТ, где АЗ = I t, АП = IURt, АВНУТ = IUrt. Тогда
  • где UR − напряжение на внешнем сопротивлении, Ur − напряжение на внутреннем сопротивлении источника тока.
  • Мощность тока можно найти по формуле
  1. Развиваемая источником тока затраченная мощность
  2. КПД источника тока можно найти по формуле
  3. Затраченная источником тока мощность
  4. гдеI = /(R + r).
  5. Полезная мощность, выделяемая во внешнем участке цепи
  6. Следовательно, затраченная и полезная мощности являются функциями от

внешнего сопротивления. Если R→ 0, то NП → 0; R→ ∞, то NП → 0. В этом случае функция NП = f2 (R) имеет один максимум. Найдем условие, при котором полезная мощность максимальна, т. е. NП = NП, МАХ. Для этого производную приравняем нулю,

т. е. , т. е.

Вывод: Если R = r , то полезная мощность максимальна, а КПД источника тока равно 50%.

Тепловое действие тока. Закон Джоуля-Ленца.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Международные бухгалтерские принципы - справочник студента

Оценим за полчаса!

При прохождении тока по проводнику происходит его нагревание, т. е. выделяется некоторое количество теплоты Q.

  • Для определения выделяющегося количества теплоты за единицу времени рассмотрим однородный участок проводника, к которому приложена разность потенциалов ϕ1 − ϕ2.
  •  На основании закона сохранения энергии эта работа переходит во внутреннюю (тепловую) энергию, в результате чего проводник нагревается.
  •  Действительно, в металлах электроны проводимости (носители тока) под действием сил поля получают дополнительную кинетическую энергию, которая расходуется на возбуждение колебаний кристаллической решетки при взаимодействии электронов с ее узлами.

Так как при прохождении тока в металлических проводниках не происходит изменение внутренней структуры металла, то вся работа сторонних сил идет на выделение тепла, т. е. δА = δQ.

На основании закона Ома для однородного участка проводника U = IR и формулы (19) получаем закон Джоуля−Ленца:

  1. Если на участке цепи выделить некоторый объем dV, то с учетом формул (2) и (9) последняя формула примет вид
  2. Если в последнем выражении левую и правую части разделить на dVdt, то получим удельную тепловую мощность:
  3.                                 (26)

т. е. удельная тепловая мощность определяет количество теплоты, которое выделяется в единице объема проводника за единицу времени, и численно равна произведению удельного сопротивления проводника на квадрат плотности тока.

  • Формула (26) применима к любым проводникам, не зависит от их формы, однородности и природы сил, возбуждающих электрический ток.
  •  Если на заряды проводника действуют только электрические силы, то на основании закона Ома (11) имеем
  • Если участок цепи неоднородный, то выделяемое количество теплоты по закону сохранения энергии будет равно алгебраической сумме работ кулоновских и сторонних сил. Действительно, умножив правую и левую части формулы (16) на силу тока I получим
  • (28)
  • Следовательно, из уравнения (28) следует, что тепловая мощность
  • (29)
  • выделяемая на участке цепи 1−2, равна алгебраической сумме мощностей кулоновских и сторонних сил. Если цепь замкнута, то затраченная мощность
  • N =I ⋅ . (30)
  • Таким образом, общее количество теплоты, выделяемой за единицу времени во всей цепи, равно мощности только сторонних сил.

Электрическое же поле только перераспределяет теплоту по различным участкам цепи. Закон Джоуля−Ленца справедлив и для электролитов, так как работа электрического поля в них не расходуется на образование ионов, которые возникают при диссоциации молекул в результате растворения.

Высокая электропроводность и теплопроводность металлов объясняется наличием в них «свободных» электронов.

Дата добавления: 2018-08-06; просмотров: 300;

Источник: https://studopedia.net/7_46662_zakon-oma-dlya-zamknutoy-tsepi-napryazhenie.html

Закон Ома для замкнутой цепи: описание и примеры задач

 Закон Ома для замкнутой цепи - Справочник студентаЗакон Ома для замкнутой цепи часто находит применение в работе с электричеством. Благодаря закономерности, найденной немецким физиком Георгом Омом, сегодня мы можем рассчитать величину тока, протекающего в проводе или необходимую толщину провода для подключения к сети.

История открытия

Будущий ученый с малых лет интересовался природой электрического тока. Он провел множество испытаний, связанных с измерением напряжения и силы тока.

Ввиду несовершенства измерительных приборов того времени, первые результаты исследований были ошибочны и препятствовали дальнейшему развитию вопроса. Георг опубликовал первую научную работу, в которой описывал возможную связь между напряжением и силой тока.

Последующие его работы подтвердили предположения, и Ом сформулировал свой знаменитый закон. Все труды были внесены в доклад 1826 года, но научное сообщество не заметило труды молодого физика.

Через пять лет, когда известный французский учёный Пулье пришел к такому же выводу, Георга Ома наградили медалью Копли, за внесение большого вклада в развитии физика как науки.

Сегодня закон Ома используется по всему миру, признанный истинным законом природы. .

Детальное описание

Закон Георга показывает значение электричества в определенной сети, имеющее зависимость от сопротивления к нагрузке и внутренним элементам источника питания. Рассмотрим это детально.

Условное устройство, использующее электроэнергию (например, звуковой динамик) при подключении к источнику питания образует замкнутую цепь (рисунок 1). Подсоединим динамик к аккумулятору. Следующий через динамик ток тоже следует через источник питания.

Поток заряженных частиц встретит сопротивление провода и внутренней электроники устройства, а также сопротивление аккумулятора (электролит внутри банки оказывает  определенное воздействие на электрический ток).

Исходя из этого, значение сопротивления закрытой сети складывается из сопротивления:

  • Источника питания;
  • Электрического устройства.

Закон Ома для замкнутой цепи - Справочник студента

Подключение условного электрического прибора (динамика) к источнику питания (автомобильному аккумулятору)

Первый параметр называют внутренним, второй – внешним сопротивлением. Противодействие источника электричества маркируется символом r.

Представим, что по сети источник питания/электрическое устройство проходит определённый ток T. Для сохранения стабильного значения электричества внешней сети, в соответствии с законом, на её окончаниях должна наблюдаться потенциальная разность, которая равна R*T.

Ток такой же величины проходит и внутри цепи. Вследствие этого – сохранение постоянного значения электричества внутри сети требует потенциальной разности на окончаниях сопротивления r. Она, согласно закону, должна равняться T*r.

При сохранении стабильного тока в сети, значение электродвижущей силы равно:

  • E=T*r+T*R
  • Из формулы следует, что ЭДС равна сумме падения напряжений во внутренней и внешней сети. Если вынести значение T за скобки, получим:
  • Е=T(r+R)
  • или
  • T=E/(r+R)

Примеры задач на применение закона для соединенной сети

1) К источнику ЭДС 15 В и сопротивлением 2 Ом подсоединен реостат с сопротивлением 5 Ом. Задача – вычислить силу тока и напряжение на зажимах.

Вычисление

  • Представим закон Ома для соединенной сети: T=E/(r+R).
  • Снижение напряжения вычислим по формуле: U= E-Tr=ER/(R+r).
  • Подставим имеющиеся значения в формулу: T= (15 В)/((5+2) Ом) = 2.1 А, U=(15 В* 5 Ом)/(5+1) Ом = 12.5 В

Ответ: 2.1 А, 12.5 В.

  2) При подсоединении к гальваническим элементам резистора с сопротивлением 30 Ом, сила тока в сети приняла значение в 1.5 А, а при подсоединении такого же элемента с сопротивлением 15 Ом сила тока стала 2.5 А. Задача – узнать значение ЭДС и внутреннее сопротивление цепи из гальванических элементов.

Вычисление

  • Запишем закон Георга Ома для соединённой сети: T=E/(r+R).
  • Из него выведем формулы для внутреннего и внешнего сопротивления: E=T_1 R_1+T_1 r, E= T_2 R_2 + T 2r.
  • Приравняем части формулы и вычислим внутреннее сопротивление: r=(T_1 R_1-T_2 R_2)/(T_2-T_1 ).
  • Полученные значения подставим в закон: E=(T_1 T_2 (R_2-R_1))/(T_2-T_1 ).
  • Проведем вычисления: r=(1.5 А∙30 Ом-2.5А∙15 Ом)/(2,5-1,5)А=7.5 Ом, E=(1.5 А∙2.5А(30-15)Ом)/((2.5-1.5)А)=56 В.

Ответ: 7.5 Ом, 56 В.

Сфера применения закона Ома для замкнутой цепи

Закон Ома – универсальный инструмент электрика. Он позволяет правильно рассчитать силу тока и напряжение в сети. В основе принципа работы некоторых устройств лежит закон Ома. В частности, предохранителей короткого замыкания.

Короткое замыкание – случайное замыкание двух участков сети, не предусмотренное конструкцией оборудования и приводящее к неисправностям. Для предотвращения таких явлений используют специальные устройства, отключающие питание сети.

Если произойдет случайное замыкание цепи с большой перегрузкой, устройство автоматически прекратит подачу тока.

Закон Ома в данном случае находит место на участке цепи постоянного тока. В полной схеме процессов может быть гораздо больше. Многие действия при построении электрической сети или ее ремонте следует проводить с учетом закона Георга Ома.

Закон Ома для замкнутой цепи - Справочник студента
Закон Ома для замкнутой цепи - Справочник студента

Сопротивление представлено отношением напряжения к силе тока в цепи. Если напряжение увеличить в n раз, значение тока также увеличится в n раз.

Не менее известны в электротехнике труды Густава Киргофа. Его правила находят применения в расчетах разветвленных сетей. В основе этих правил лежит закон Ома для электрической цепи.

Труды ученого нашли применение при изобретении многих повседневных вещей, таких как лампы накаливания и электрические плиты. Современные достижения в электронике многим обязаны открытиям 1825 года.

Читайте также:  Социальные эмоции - справочник студента

Источник: https://uelektrika.ru/osnovy-yelektrotekhniki/zakon-oma-dlya-zamknutoy-cepi/

Законы Ома и Кирхгофа, теория и примеры

Закон Ома является основным законом, который используют при расчетах цепей постоянного тока. Он является фундаментальным и может применяться для любых физических систем, где есть потоки частиц и поля, преодолевается сопротивление.

Законы или правила Кирхгофа являются приложением к закону Ома, используемым для расчета сложных электрических цепей постоянного тока.

Закон Ома

  • Обобщенный закон Ома для неоднородного участка цепи (участка цепи, содержащего источник ЭДС) имеет вид:
  •     Закон Ома для замкнутой цепи - Справочник студента
  • – разность потенциалов на концах участка цепи; – ЭДС источника на рассматриваемом участке цепи; R – внешнее сопротивление цепи; r – внутреннее сопротивление источника ЭДС. Если цепь разомкнута, значит, тока в ней нет (), то из (2) получим:

ЭДС, действующая в незамкнутой цепи, равна разности потенциалов на ее концах. Получается, для нахождения ЭДС источника следует измерить разность потенциалов на его клеммах при незамкнутой цепи.

Закон Ома для замкнутой цепи записывают как:

    Закон Ома для замкнутой цепи - Справочник студента

Величину иногда называют полным сопротивлением цепи. Формула (2) показывает, что электродвижущая сила источника тока, деленная на полное сопротивление равна силе тока в цепи.

Закон Кирхгофа

Пусть имеется произвольная разветвленная сеть проводников. В отдельных участках включены разнообразные источники тока. ЭДС источников постоянны и будем считать известными. При этом токи во всех участках цепи и разности потенциалов на них можно вычислить при помощи закона Ома и закона сохранения заряда.

Для упрощения решения задач по расчетам разветвлённых электрических цепей, имеющих несколько замкнутых контуров, несколько источников ЭДС, используют законы (или правила) Кирхгофа. Правила Кирхгофа служат для того, чтобы составить систему уравнений, из которой находят силы тока в элементах сложной разветвленной цепи.

Первый закон Кирхгофа

Сумма токов в узле цепи с учетом их знаков равна нулю:

    Закон Ома для замкнутой цепи - Справочник студента

Первое правило Кирхгофа является следствием закона сохранения электрического заряда. Алгебраическая сумма токов, сходящихся в любом узле цепи – это заряд, который приходит в узел за единицу времени.

При составлении уравнение используя законы Кирхгофа важно учитывать знаки с которыми силы токов входят в эти уравнения. Следует считать, что токи, идущие к точке разветвления, и исходящие от разветвления имеют противоположные знаки. При этом нужно для себя определить какое направление (к узлу или от узла) считать положительным.

Второй закон Кирхгофа

Произведение алгебраической величины силы тока (I) на сумму вешних и внутренних сопротивлений всех участков замкнутого контура равно сумме алгебраических значений сторонних ЭДС () рассматриваемого контура:

    Закон Ома для замкнутой цепи - Справочник студента

Каждое произведение определяет разность потенциалов, которая существовала бы между концами соответствующего участка, если бы ЭДС в нем была равно нулю. Величину называют падением напряжения, которое вызывается током.

Второй закон Кирхгофа иногда формулируют следующим образом:

Для замкнутого контура сумма падений напряжения есть сума ЭДС в рассматриваемом контуре.

Второе правило (закон) Кирхгофа является следствием обобщенного закона Ома. Так, если в изолированной замкнутой цепи есть один источник ЭДС, то сила тока в цепи будет такой, что сумма падения напряжения на внешнем сопротивлении и внутреннем сопротивлении источника будет равна сторонней ЭДС источника.

Если источников ЭДС несколько, то берут их алгебраическую сумму. Знак ЭДС выбирается положительным, если при движении по контуру в положительном направлении первым встречается отрицательный полюс источника.

(За положительное направление обхода контура принимают направление обхода цепи либо по часовой стрелке, либо против нее).

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/fizika/zakony-oma-i-kirxgofa/

Закон Ома для замкнутой цепи

  • Закон Ома для замкнутой цепи показывает — значение тока в реальной цепи зависит не только от сопротивления нагрузки, но и от сопротивления источника.
  • Формулировка закона Ома для замкнутой цепи звучит следующим образом: величина тока в замкнутой цепи, состоящей из источника тока, обладающего внутренним и внешним нагрузочным сопротивлениями, равна отношению электродвижущей силы источника к сумме внутреннего и внешнего сопротивлений.
  • Впервые зависимость тока от сопротивлений была экспериментально установлена и описана Георгом Омом в 1826 году.
  • Формула закона Ома для замкнутой цепи записывается в следующем виде:

Закон Ома для замкнутой цепи - Справочник студента

где:

  • I [А] – сила тока в цепи,
  • ε [В] – ЭДС источника напряжения,
  • R [Ом] – сопротивление всех внешних элементов цепи,
  • r [Ом] – внутреннее сопротивление источника напряжения

Физический смысл закона

Потребители электрического тока вместе с источником тока образуют замкнутую электрическую цепь. Ток, проходящий через потребитель, проходит и через источник тока, а значит, току кроме сопротивления проводника оказывается сопротивление самого источника. Таким образом, общее сопротивление замкнутой цепи будет складываться из сопротивления потребителя и сопротивления источника.

Физический смысл зависимости тока от ЭДС источника и сопротивления цепи заключается в том, что чем больше ЭДС, тем больше энергия носителей зарядов, а значит больше скорость их упорядоченного движения. При увеличении сопротивления цепи энергия и скорость движения носителей зарядов, следовательно, и величина тока уменьшаются.

Закон Ома для замкнутой цепи - Справочник студента

Зависимость можно показать на опыте. Рассмотрим цепь, состоящую из источника, реостата и амперметра. После включения в цепи идет ток, наблюдаемый по амперметру, двигая ползунок реостата, увидим, что при изменении внешнего сопротивления ток будет меняться.

Примеры задач на применение закона Ома для замкнутой цепи

К источнику ЭДС 10 В и внутренним сопротивлением 1 Ом подключен реостат, сопротивление которого 4 Ом. Найти силу тока в цепи и напряжение на зажимах источника.

Дано:
Решение:
  • Запишем закон Ома для замкнутой цепи — I=ε/(R+r) .
  • Падение напряжения на зажимах источника найдем по формуле U=ε-Ir=εR/(R+r).
  • Подставим заданные значения и вычислим I=(10 В)/((4+1)Ом)=2 А, U=(10 В∙4Ом)/(4+1)Ом=8 В.
  • Ответ: 2 А, 8 В.

При подключении к батарее гальванических элементов резистора сопротивлением 20 Ом сила тока в цепи была 1 А, а при подключении резистора сопротивлением 10 Ом сила тока стала 1,5 А. Найти ЭДС и внутреннее сопротивление батареи.

Дано:
Решение:
  • R1 = 20 Ом
  • R2 = 10 Ом
  • I1 = 1 A
  • I2 = 1.5 A
  • Запишем закон Ома для замкнутой цепи — I=ε/(R+r) .
  • Отсюда для каждого сопротивления получим ε=I_1 R_1+I_1 r, ε=I_2 R_2+I_2 r.
    .
  • Приравняем правые части уравнений и найдем внутреннее сопротивление r=(I_1 R_1-I_2 R_2)/(I_2-I_1 ).
  • Подставим полученное значение в закон Ома ε=(I_1 I_2 (R_2-R_1))/(I_2-I_1 ).
  • Произведем вычисления r=(1А∙20 Ом-1,5А∙10Ом)/(1,5-1)А=10 Ом, ε=(1А∙1,5А(20-10)Ом)/((1,5-1)А)=30 В.
  • Ответ: 30 В, 10 Ом.

Источник: https://zakon-oma.ru/dlya-zamknutoj-cepi.php

Закон Ома для замкнутой цепи

Каждый специалист, ремонтирующий и обслуживающий электроустановки, должен хорошо знать и применять на практике закон Ома для замкнутой цепи. Это действительно так, поскольку закономерности, открытые немецким физиком Георгом Омом, лежат в основе всей электротехники. Данный закон стал весомым вкладом в дальнейшее развитие научных знаний в области электричества.

Физические свойства закона Ома

Прямая взаимосвязь между силой тока, напряжением, подведенным к сети, и сопротивлением проводника была обнаружена Омом в 1826 году. В дальнейшем, понятие напряжения было заменено на более точный термин – электродвижущую силу (ЭДС).

После теоретического обоснования этой зависимости был выведен закон для замкнутой цепи. Его важной особенностью считается обязательное отсутствие какого-либо внешнего возмущения.

Поэтому стандартные формулировки потеряют свою актуальность, если, например, поместить проводник в переменное магнитное поле.

Для экспериментов по выводу закона использовалась простейшая схема, состоящая из источника питания, обладающего ЭДС и подключенных к нему двух выводов, соединенных с резистором. В проводнике начинают в определенном направлении перемещаться элементарные частицы, несущие заряд.

Таким образом, сила тока представляется в виде отношения ЭДС к общему сопротивлению всей цепи: I = E/R. Закон Ома для замкнутой цепи - Справочник студента В представленной формуле Е – является электродвижущей силой, измеряемой в вольтах, I – сила тока в амперах, а R выступает в роли электрического сопротивления резистора, измеряемого в омах. При этом, учитываются все составляющие сопротивления и при расчетах используется их суммарное значение. Они включают сопротивление самого резистора, проводника (r) и источника питания (r0). Окончательно формула будет выглядеть так: I = E/(R+r+r0).

Если значение внутреннего сопротивления источника тока r0 превышает сумму R+r, то в этом случае отсутствует зависимость силы тока от характеристик подключенной нагрузки, а источник ЭДС исполняет роль источника тока. Когда r0 ниже суммы R+r, получается обратная пропорция тока с суммарным внешним сопротивлением, а напряжение поступает за счет источника питания.

Формула индуктивного сопротивления

Закон Ома для выполнения расчетов

Точные расчеты требуют учета всех потерь напряжения, в том числе и в местах соединений. Для определения электродвижущей силы на выводах источника тока замеряется разность потенциалов при разомкнутой цепи, когда нагрузка полностью отключена.

В этом случае применяется не только закон Ома для замкнутой цепи, но и закон, действующий для участка цепи. Данный участок считается однородным, поскольку здесь принимается в расчет только разность потенциалов, без учета ЭДС.

Это дает возможность рассчитать каждый элемент электрической цепи по формуле I=U/R, в которой U является разностью потенциалов или напряжением, измеряемым в вольтах.

Замеры выполняются с помощью вольтметра при подключении щупов к выводам нагрузки или сопротивления. Полученное значение напряжения будет всегда ниже электродвижущей силы. Это наиболее распространенная формула, позволяющая найти любую составляющую при наличии двух известных.

Закон Ома для замкнутой цепи имеет много общего с законом, выведенным для магнитной цепи. В этой системе проводник выполнен в виде замкнутого магнитопровода. В качестве источника выступает обмотка катушки по виткам которой протекает электрический ток.

Появляющийся магнитный поток (Ф) замыкается на магнитопровод и начинает циркулировать по контуру. Он находится в непосредственной зависимости от магнитодвижущей силы и сопротивления материала, через который проходит.

Данное явление выражено формулой Ф=F/Rm, в которой F представляет собой магнитодвижущую силу, а Rm служит сопротивлением, вызывающим затухание.

Как рассчитать цепи

Источник: https://electric-220.ru/news/zakon_oma_dlja_zamknutoj_cepi/2016-06-15-976

ЭДС. Закон Ома для полной цепи

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи

  • До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.
  • Как мы знаем, положительный заряд :
  • • уходит во внешнюю цепь с положительной клеммы источника;
  • • перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;
  • • приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила , направленная против движения заряда (т.е. против направления тока).

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1).

Закон Ома для замкнутой цепи - Справочник студента

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :

(1)

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2).

Рис. 2. Полная цепь

  1. Наша задача — найти силу тока в цепи и напряжение на резисторе .
  2. За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:
  3. (2)
  4. Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:
  5. (3)
  6. Итак, , и мы приравниваем правые части формул (2) и (3):
  7. После сокращения на получаем:
  8. Вот мы и нашли ток в цепи:
  9. (4)
  10. Формула (4) называется законом Ома для полной цепи.
  11. Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:
Читайте также:  Плазменное состояние вещества - справочник студента

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

Зная силу тока (формула (4)), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:

(5)

Это напряжение является разностью потенциалов между точками и (рис. 2). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5), что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт .

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от , и формула (5) снова даёт нам .

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

Кпд электрической цепи

Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

  • Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .
  • Если сила тока в цепи равна , то
  • Некоторое количество теплоты выделяется также на источнике тока:
  • Полное количество теплоты, которое выделяется в цепи, равно:
  • Кпд электрической цепи — это отношение полезного тепла к полному:
  • КПД цепи равен единице лишь в том случае, если источник тока идеальный .

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3 и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

  1. Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:
  2. Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):
  3. Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .
  4. Подставляем сюда выражения для , и закон Джоуля–Ленца:
  5. Сокращая на , получаем закон Ома для неоднородного участка цепи:
  6. (6)
  7. или, что то же самое:
  8. (7)

Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

Отметим два следствия выведенных формул (6) и (7).

1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4. Здесь ток, идущий от к , направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току:

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

  • Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:
  • Тогда закон Ома для неоднородного участка примет вид:
  • (8)
  • или:
  • где по-прежнему — напряжение на участке.
  • Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Источник: https://ege-study.ru/ru/ege/materialy/fizika/eds-zakon-oma-dlya-polnoj-cepi/

Закон Ома

Закон Ома — физический закон, определяющий зависимость между электрическими величинами — напряжением, сопротивлением и током для проводников.
Впервые открыл и описал его в 1826 году немецкий физик Георг Ом, показавший (с помощью гальванометра) количественную связь между электродвижущей силой, электрическим током и свойствами проводника, как пропорциональную зависимость.

Впоследствии свойства проводника, способные противостоять электрическому току на основе этой зависимости, стали называть электрическим сопротивлением (Resistance), обозначать в расчётах и на схемах буквой R и измерять в Омах в честь первооткрывателя.

Сам источник электрической энергии также обладает внутренним сопротивлением, которое принято обозначать буквой r.

Закон Ома для участка цепи

  • Со школьного курса физики всем хорошо известна классическая трактовка Закона Ома:
  • Сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.
  • I = U/R
  • Это значит, если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 Вольт, тогда величина тока I в проводнике будет равна 1/1 = 1 Ампер.
  1. Отсюда следуют ещё два полезных соотношения:
  2. Если в проводнике, сопротивлением 1 Ом, протекает ток 1 Ампер, значит на концах проводника напряжение 1 Вольт (падение напряжения).
  3. U = IR
  4. Если на концах проводника есть напряжение 1 Вольт и по нему протекает ток 1 Ампер, значит сопротивление проводника равно 1 Ом.
  5. R = U/I

Вышеописанные формулы в таком виде могут быть применимы для переменного тока лишь в том случае, если цепь состоит только из активного сопротивления R.
Кроме того, следует помнить, что Закон Ома справедлив только для линейных элементов цепи.

Предлагается простой Онлайн-калькулятор для практических расчётов.

Закон Ома. Расчёт напряжения, сопротивления, тока, мощности.

После сброса ввести два любых известных параметра.

I=U/R;   U=IR;   R=U/I; P=UI   P=U²/R;   P=I²R;
R=U²/P;   R=P/I²   U=√(PR)   I= √(P/R)

Закон Ома для замкнутой цепи

Закон Ома для замкнутой цепи - Справочник студента

Если к источнику питания подключить внешнюю цепь сопротивлением R, в цепи пойдёт ток с учётом внутреннего сопротивления источника:

I — Сила тока в цепи.
— Электродвижущая сила (ЭДС) — величина напряжения источника питания не зависящая от внешней цепи (без нагрузки). Характеризуется потенциальной энергией источника.
r — Внутреннее сопротивление источника питания.

Для электродвижущей силы внешнеее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I = /(R+r) .

Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR.

Напряжение U, при подключении нагрузки R, всегда будет меньше чем ЭДС на величину произведения I*r, которую называют падением напряжения на внутреннем сопротивлении источника питания.

С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы.

По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U = — I*r.

Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U.
Если ток в цепи равен нулю, следовательно, = U. Цепь разомкнута, ЭДС источника равна напряжению на его выводах.

В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС ( ≈ U ) независимо от сопротивления внешней цепи R. Такой источник питания называют источником напряжения.

Закон Ома для переменного тока

При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление. В таком случае запись Закона Ома будет иметь вид:

I = U/Z

Здесь Z — полное (комплексное) сопротивление цепи — импеданс. В него входит активная R и реактивная X составляющие. Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи.

  • Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс.
  • С учётом сдвига фаз φ, созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме:

— комплексная амплитуда тока. = Iampe jφ
— комплексная амплитуда напряжения. = Uampe jφ
— комплексное сопротивление. Импеданс. φ — угол сдвига фаз между током и напряжением.
e — константа, основание натурального логарифма.
j — мнимая единица. Iamp , Uamp — амплитудные значения синусоидального тока и напряжения.

Нелинейные элементы и цепи

Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников.

Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ).

К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы.

Такие элементы и цепи, в которых они используются, называют нелинейными.

Источник: https://tel-spb.ru/ohm/

Как использовать закон Ома: инструкция для чайников с примерами

Я обычно не использую много математики, когда занимаюсь электроникой. Но закон Ома — редкое исключение:)

Закон был выведен Георгом Омом и основан на взаимосвязи напряжения, тока и сопротивления:

Рис. 1. Иллюстрация связи сопротивления (Ohm), тока (Amp) и напряжения (Volt)

Посмотрите на рисунок выше и посмотрите, имеет ли для вас смысл:

  • Если вы увеличиваете напряжение в цепи, при неизменном сопротивлении, вы получаете больше тока.
  • Если вы увеличиваете сопротивление в цепи, в то время как напряжение остается тем же, вы получаете меньший ток.

Закон Ома — это способ описания взаимосвязи между напряжением, сопротивлением и током с использованием математики: V = R*I, где

  • V — напряжение;
  • I — ток;
  • R — является символом сопротивления.

Вы видоизменить формулу и получить R = V / I или I = V / R. Пока у вас есть две переменные, вы можете вычислить последнюю.

Закон треугольника Ома

Вы можете использовать этот треугольник, чтобы запомнить закон Ома:

Рис. 2. Треугольник закона Ома

Как использовать это:

Используйте свою руку, чтобы покрыть переменную, которое вы хотите найти. Если оставшиеся буквы расположены друг над другом, это значит, разделить верхнюю с нижней. Если они рядом друг с другом, это значит, умножить одно на другое.

Пример: нужно найти напряжение

Рис. 3. Закрываем рукой напряжение

Закрываем V в треугольнике, затем смотрим на R и I. I и R рядом друг с другом (на одной горизонтальной линии), поэтому вам нужно их умножить. Это означает, что вы получите:

  • V = I * R
  • Все просто!
  • Пример: Нужно найти сопротивление

Рис. 4. Закрываем сопротивление

Положите руку на R. Затем вы увидите, что V над I. Это означает, что вы должны разделить V на I:

R = V / I

Пример: нужно найти силу тока

Рис. 5. Закрываем ток

Поместите руку над I. Затем вы увидите V над R, что означает деление V на R:

I = V / R

Практические примеры использования закона Ома

Пример 1

Лучший способ научить его использовать на своем примере.

Ниже приведена очень простая схема с аккумулятором и резистором. Аккумулятор представляет собой источник напряжения на 12 вольт, а сопротивление резистора составляет 600 Ом. Сколько тока протекает по цепи?

Рис. 6. Пример 1

  1. Чтобы найти величину тока, вы можете использовать треугольник выше к формуле для тока: I = V / R. Теперь вы можете рассчитать ток, используя напряжение и сопротивление:
  2. I = 12 В / 600 Ом I = 0,02 А = 20 мА (миллиампер)
  3. Таким образом, ток в цепи составляет 20 мА.

Пример 2

Давайте попробуем другой пример.

Ниже у нас есть схема с резистором и аккумулятором снова. Но на этот раз мы не знаем напряжение батареи. Вместо этого мы представляем, что мы измерили ток в цепи и обнаружили, что он составляет 3 мА (миллиампер).

Рис. 7. Пример 2

Сопротивление резистора составляет 600 Ом. Какое напряжение батареи? Используя треугольник Ома (рис. 3) получаем:

V = RI V = 600 Ом * 3 мА

V = 1,8 В

Поэтому напряжение аккумулятора должно быть 1,8 В.

Более подробное о законе Ома вы можете почитать в моей статье на сайте: https://www.asutpp.ru/zakon-oma-dlya-uchastka-cepi.html

Источник: https://zen.yandex.ru/media/id/5d38230cd5135c00ad1384d4/5d42b0f080879d00ada0ccf9

Ссылка на основную публикацию