Закон электромагнитной индукции фарадея и его формулировка в дифференциальной форме — справочник студента

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студентаЗакон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

При изменении тока в электрической цепи возникает магнитное поле. Причиной этого является электромагнитная индукция. Это явление широко применяется на практике. 

В статье рассказывается о том, что это такое, и каковы его основные закономерности.

Явление электромагнитной индукции

При изменении тока происходит образование магнитного поля. Это явление, в свою очередь, влияет на движение электронов. 

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

Если рассматривать одиночный провод, расположенный прямо, то он будет создавать поле, направление силовых линий которого идёт по кругу в перпендикулярной ему плоскости.

Если в магнитном поле происходят изменения, то это увеличивает или ослабляет силу тока, который проходит по проводнику. Направление изменения зависит от того, как меняется поле. Это явление позволяет преобразовывать электрическую энергию в механическую или наоборот.

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

Учёный, которому принадлежит заслуга открытия взаимодействия электрического и магнитного полей — Майкл Фарадей. 

Были проведены опыты, которые показали, что изменение магнитного поля способно порождать движение электронов. Это явление впоследствии назвали индукционным током.

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

Опыты, выполненные этим учёным, выглядят следующим образом:

  1. Фарадей сделал катушку с полой серединой. Её концы соединил с гальванометром. Взял в руки магнит и поместил его внутрь катушки. Если его вдвигать или выдвигать, то на гальванометре отклоняется стрелка, доказывая наличие тока. Чем быстрее выполняемое движение, тем выше его сила. Аналогичный эффект будет достигнут, если магнит будет неподвижен, но будет перемещаться соленоид.

  2. В следующем опыте были использованы две катушки. Большая подключена к гальванометру, а вторая — к источнику. Одна из катушек была настолько узкой, чтоб могла проходить внутрь второй. Если её поместить туда и несколько раз включить и выключить ток, то на гальванометре стрелка отклонится, показывая наличие тока.

  3. Если взять два соленоида под током и один из них подвигать рядом с другим, то в них также возникнет движение электронов.

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

  • При проведении таких опытов более быстрое движение создаёт более сильное движение электронов.
  • Одновременно с Фарадеем аналогичные исследования осуществил Джозеф Генри, однако опубликовал свои результаты позже.

Объяснение явления

Движение носителей заряда — электронов происходит в том случае, когда на них действует электродвижущая сила, создаваемая разностью потенциалов. 

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

Возникновение тока под действием изменения магнитного поля происходит из-за того, что оно создаёт такую силу, которая носит название ЭДС индукции. Хотя явление индуктивности было обнаружено Фарадеем, он не дал ему теоретического объяснения. 

Теория электромагнитного поля в физике была создана Максвеллом в 1861 году. Этому явлению присущи такие черты:

  • источником движения электронов является переменное магнитное поле;
  • его наличие можно обнаружить по производимому воздействию на электрические заряды;
  • это поле не является потенциальным;
  • силовые линии поля представляют собой замкнутые кривые.

Работа магнитного поля выражается в создании электродвижущей силы для электронов.

Закон электромагнитной индукции Фарадея

Основной характеристикой магнитного поля является магнитный поток. Зрительно его можно представить, как силовые линии, пронизывающие перпендикулярную плоскую фигуру, ограниченную замкнутой линией. Эти линии выражают вектор магнитной индукции.

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

Произведение модуля этой величины на площадь для равномерного и однородного магнитного поля равно потоку поля через рассматриваемый контур.

При рассмотрении сложного поля, фигуру разбивают на небольшие участки, в которых поле равномерно и суммируют значения для каждого из них. Для вычисления в таких случаях используются методы дифференциального и интегрального исчисления.

Электромагнитная индукция измеряется в Тесла (Тл). Эта единица получила своё название в честь великого учёного-физика.

Закон Фарадея количественно описывает влияние магнитного поля на движение электронов. Он утверждает следующее: скорость изменения потока электромагнитного поля равна порождаемой им электродвижущей силе, воздействующей на электроны и создающей ток.

Нужно заметить, что когда магнитное поле порождается изменением силы тока, то возникающая электродвижущая сила воздействует на него противоположным образом. Это можно прояснить на таком примере. 

Если рассматривается провод, и в нём увеличивается сила тока, то это создаёт магнитное поле. Оно, в свою очередь, создаёт ЭДС, которая препятствует увеличению.

Правило Ленца

Это правило даёт возможность правильно определить направление индукционного тока в различных ситуациях. Оно формулируется следующим образом: направление тока, порождённого индукцией, создаёт такое изменение магнитного потока, препятствующее изменению внешнего поля, благодаря которому оно возникло.

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

Это можно пояснить на следующем примере. Будет рассмотрена ситуация, когда внешнее магнитное поле со временем будет возрастать, а его силовые линии направлены вверх. 

Это произойдёт, например, в той ситуации, когда снизу к контуру, расположенному горизонтально, будут приближать магнит так, чтобы его северный полюс был обращён вверх. В этом случае магнитный поток будет увеличиваться, создавая электродвижущую силу.

В контуре будет создан индукционный ток. Он будет таким, чтобы магнитные силовые линии были противоположными по отношению к тем, которые характеризуют первоначальное. Теперь можно определить направление индукционного тока в контуре.

Как известно, если смотреть со стороны создаваемого поля, то он будет направлен по часовой стрелке. То есть, если смотреть сверху, направление будет против неё.

На этом примере можно увидеть, как с помощью правила Ленца можно определить направление магнитного поля и индукционного тока.

Самоиндукция

В этом случае рассматривается ситуация, когда изменение движения электронов порождает ЭДС, вызывающий индукционный ток в этом же проводнике. 

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

Взяв за основу правило Ленца, можно утверждать, что он имеет направление, противоположное первоначальному изменению.

Самоиндукция похожа на явление инерции. Тяжёлое тело невозможно остановить мгновенно. Также нельзя изменить силу тока за один миг до нужной величины из-за наличия явления самоиндукции.

Это свойство можно продемонстрировать следующим опытом. Нужно сделать две электрических цепи. В одной из них имеется источник и лампочка. Другая сделана аналогичным образом, но различие состоит в том, что в цепь добавлена катушка. 

В первой цепи после включения лампочка загорается сразу. Во второй, учитывая наличие индуктивного элемента, это происходит с заметным опозданием.

После размыкания свет в первой лампочке отключается практически мгновенно, а во второй это происходит замедленно. Важно отметить, что в процессе выключения индукционный ток может превысить первоначальный. Поскольку в этой ситуации он направлен также, как и рабочий, то сила тока может возрасти. В некоторых цепях это может вызвать перегорание лампочки.

Индуктивность

Проводник, через который проходит изменяющийся ток, способен накапливать энергию путём использования магнитного поля. У прямолинейного отрезка провода эта способность имеет незначительную величину. 

Однако, если речь идёт о катушке, то её величина гораздо сильнее. Эта характеристика называется индуктивностью. Она обозначается как «L» и играет важную роль при определении различных характеристик электромагнитного поля.

  1. Магнитный поток в определённом контуре можно выразить посредством формулы Ф = L* I, а электродвижущую силу в виде E = L* (dI/dt).
  2. Ток, проходящий через контур, способен создать электромагнитное поле, причём оно будет тем сильнее, чем быстрее будут происходить его изменения.
  3. На практике для увеличения индуктивности катушки используют вставленные внутрь стержни из ферромагнетика.

Энергия магнитного поля

Электрический ток создаёт магнитное поле. При этом он затрачивает определённую энергию. Её величина равна той работе, которая была затрачена на создание поля. Она вычисляется по следующей формуле:

Здесь использовались такие обозначения:

  • W – энергия магнитного поля;
  • L – индуктивность;
  • I – сила тока.

Если магнитное поле по какой-то причине пропадёт, то его энергия выделится в той или иной форме.

Применение электромагнитной индукции

Это явление активно применяется в различных сферах жизни человеческого общества. 

Далее будут приведены несколько наиболее известных примеров:

  • радиовещание невозможно без использования явления электромагнитной индукции;
  • в медицине магнитотерапия является одним из эффективных методов лечения;
  • при фундаментальных исследованиях для разгона элементарных частиц применяются синхрофазотроны, работа которых основана на явлении индуктивности;
  • счётчики электричества, применяемые в быту для его учёта, используют рассматриваемое явление;
  • для того, чтобы передавать произведённую электростанциями электрическую энергию на большие расстояния, применяются трансформаторы, работа которых построена на использовании электромагнитной индукции;
  • в металлургии для плавки металла применяются индукционные печи.

Использование этого явления очень широко распространено. Приведённые примеры являются только частью различных вариантов использования.

Все формулы по теме «Электромагнитная индукция»

Для того чтобы кратко освежить в памяти формулы, относящиеся к магнитной индукции, далее приводится перечень наиболее важных из них.

Открытие законов, которые описывают поведение электромагнитного поля, является одним из важнейших достижений науки за всю историю. В современной жизни использование этого явления происходит практически во всех областях жизни общества.

Источник: https://nauka.club/fizika/elektromagnitnaya-induktsiya.html

Электромагнитная индукция. — Закон электромагнитной индукции

Электромагнитная
индукция

явление возникновения электрического
тока в
замкнутом контуре при изменении
магнитного
потока,
проходящего через него.

Электромагнитная
индукция была открыта Майклом
Фарадеем 29
августа 1831 года.

Он обнаружил, что
электродвижущая сила, возникающая в
замкнутом проводящем контуре,
пропорциональна скорости изменения
магнитного
поток через
поверхность, ограниченную этим контуром.

Величина электродвижущей
силы (ЭДС)
не зависит от того, что является причиной
изменения потока — изменение самого
магнитного поля или движение контура
(или его части) в магнитном поле. Электрический ток,
вызванный этой ЭДС, называется индукционным
током.

Зако́н
электромагни́тной инду́кции
Фараде́я
 является
основным законом электродинамики,
касающимся принципов
работы трансформаторов,дросселей,
многих видов электродвигателей и генераторов. Закон
гласит:

  • Для
    любого замкнутого контура
    индуцированная электродвижущая
    сила (ЭДС) равна скорости
    изменения магнитного потока,
    проходящего через этот контур.

или
другими словами:

  • Генерируемая
    ЭДС пропорциональна скорости изменения
    магнитного потока.
Читайте также:  Механическая сила. основная задача динамики - справочник студента

Согласно закону электромагнитной индукции Фарадея: 

где

 — электродвижущая сила, действующая вдоль произвольно выбранного контура, Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента — магнитный поток через поверхность, натянутую на этот контур.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

где

 — электродвижущая сила, — число витков, — магнитный поток через один виток, — потокосцепление катушки.Информация взята с http://ru.wikipedia.org/wiki/Закон_электромагнитной_индукции_

Источник: https://www.sites.google.com/site/zakonelektromagnitnojindukcii/home/zakon-elektromagnitnoj-indukcii

Закон ЭДС индукции Фарадея для трансформаторов

Электричество обладает способностью генерировать магнитное поле. В 1831 году М. Фарадей ввел понятие электромагнитная индукция. Он смог получить в закрытой системе проводников электричество, появляющееся при изменении показателей магнитного потока. Формула закона Фарадея дала толчок для развития электродинамики.

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока.

Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным.

До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

Опытное доказательство

Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

Количественное выражение

Установить количественное значение явления электромагнитной индукции позволяет закон Фарадея. Он гласит, что ЭДС, определяющаяся в системе, меняет значение пропорционально скорости перемещения потока в проводнике. Формула будет иметь такой вид:

Отрицательный знак свидетельствует о том, что ЭДС препятствует появлению изменений внутри контура. Для решения некоторых задач отрицательный знак в формуле не ставят. В этом случае результат записывают в виде модуля.

Система может включать в себя несколько витков. Количество их обозначается латинской буквой N. Все элементы контура пронизываются единым магнитным потоком. ЭДС индукции будет рассчитываться так:

Понятным примером воссоздания электричества в проводнике считается катушка, сквозь которую перемещается постоянный магнит.

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита.

Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу.

Ток будет перемещаться в сторону движения часовой стрелки.

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Понятие самоиндукции

  • Генерация индукции в идеальной системе, которое имеет место при падении или возрастании электричества в проводнике, именуется самоиндукцией.
  • Закон Фарадея для самоиндукции выражается равенством, когда при изменении электричества не произошло иных изменений:
  • где е – ЭДС, L – индуктивность закрытой катушки, ΔI/Δt – скорость, с которой происходят изменения силы тока.

Индуктивность

Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

Фс = L*I

Значение индуктивности также формируется из закона Фарадея.

Недвижимая система

Сила Лоренца объясняет возникновение ЭДС при движении системы в поле со значением постоянным. Индукционная ЭДС имеет способность возникать и при неподвижной проводящей системе, находящейся в переменном магнитном поле. Сила Лоренца в таком примере не способна объяснить появление ЭДС индукции.

Максвелл для проводящих систем неподвижного типа предложил применять особое уравнение. Оно объясняет возникновение в таких системах ЭДС.

Главным принципом закона Фарадея-Максвелла является факт, что переменное поле образует в пространстве вокруг себя электрическое поле.

Оно выступает фактором, провоцирующим появление тока индукции в недвижимой системе. Перемещение вектора (Е) по стационарным контурам (L) является ЭДС:

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме - Справочник студента

При наличии тока переменного значения законы Фарадея водятся в уравнения Максвелла. Причем они могут быть представлены как в дифференциальной форме, так и в виде интегралов.

Труды в области электролиза

При использовании законов Фарадея описываются закономерности, которые существуют при электролизе. Этот процесс заключается в превращении веществ с разнообразными характеристиками. Это происходит при движении электричества сквозь электролит.

Эти закономерности были доказаны М. Фарадеем в 1834 году. Первое утверждение гласит, что масса вещества, которое образуется на электроде, меняется соответственно заряду, перемещенному сквозь электролит.

Второе утверждение гласит, что эквиваленты компонентов с разными характеристиками пропорциональны химическим эквивалентам этих компонентов.

Оба представленных утверждения совмещаются в объединенный закон Фарадея. Из него следует, что число Фарадея будет равняться электричеству, способному выделить на электролите 1 моль вещества. Ее рассчитывают на единицу валентности. Именно по объединенной формуле в далеком 1874 году был вычислен заряд электрона.

Законы электролиза, установленные Фарадеем, тестировались при различном значении тока, температуры, давления, а также при одновременном выделении двух и более веществ. Электролиз также проводился в разных расплавах и растворителях.

Концентрация электролита также отличалась в разных опытах. При этом иногда наблюдались небольшие отклонения от закона Фарадея. Они объясняются электронной проводимостью электролитов, которая определяется наравне с ионной проводимостью.

Открытия, сделанные английским физиком М. Фарадеем, позволили описать множество явлений. Его законы являются основой современной электродинамики. По этому принципу функционирует различное современное оборудование.

Источник: https://ProTransformatory.ru/raschety/zakon-faradeya

Закон Фарадея: правило Ленца, уравнения Максвелла в интегральной форме, электромагнитная индукция

В статье расскажем что такое электромагнитная индукция, подробно опишем закон Фарадея и правило Ленца, а так же немного затронем тему уравнений Максвелла.

Электромагнитная индукция

Суть электромагнитной индукции заключается в том, что изменение магнитного поля, покрывающего электрическую цепь, вызывает возникновение электродвижущей силы в этой цепи, которая в случае замкнутой цепи вызывает протекание электрического тока.

 Если цепь, в которой мы должны генерировать электродвижущую силу, состоит из катушки и прикрепленного к ней амперметра, то источник изменяющегося магнитного поля, который включает в себя катушку, может быть адекватно перемещен постоянным магнитом или движущимся электромагнитом, в котором мы меняем ток питания.

 В каждом из этих случаев магнитное поле, которое пронизывает катушку, изменяется со временем.

  • В общем, изменение магнитного потока в цепи амперметра вызывает электрический ток в этой цепи.
  • Источником индуктивных явлений снова является сила Лоренца F, которая возникает, когда заряд q движется со скоростью v в магнитном поле B
  • F = q * v * B
  • Когда направляющая перемещается в поле B, подвижные носители нагрузки будут смещаться под действием силы Лоренца до тех пор, пока в проводнике не появится электрическое поле E, а сила, действующая на носители, F = q * E, уравнивает силу Лоренца. Когда линейный проводник длины l движется с постоянной скоростью v в однородном магнитном поле B, направленном перпендикулярно оси проводника и вектору скорости , как на чертеже:
  1. тогда мы сохраним условие баланса между силой Лоренца и силой отталкивания между зарядами в виде уравнения:
  2. q*v*B = q*E ,
  3. следовательно
  4. v*B = E = V / l ,
  5. где V — разность потенциалов на концах проводника длиной l. Следовательно, значение этой разности потенциалов:
  • Если вектор v не перпендикулярен полю B , но образует с ним угол N , то разность потенциалов на концах направляющей будет:
  • V = v * B * l * sin θ
  • Это означает, что перемещение проводника вдоль направления поля B не будет генерировать в нем электродвижущую силу. Нетрудно доказать, что в случае направляющей любой формы разность потенциалов между точками а и b направляющей равна:

Когда прямоугольная рамка со сторонами a и b вращается в однородном магнитном поле B с постоянной угловой скоростью T

это электродвижущая сила V, генерируемая с обеих сторон рамы:

Магнитные силы, действующие в двух других сторонах петли, перпендикулярны этим сторонам и не влияют на электродвижущую силу. Посредством соответствующего способа получения генерируемого напряжения можно реализовать простейшие модели генераторов переменного тока (а) и постоянного тока (b), как показано на рисунке:

Читайте также:  Подготовка учителя к уроку, технологическая карта урока - справочник студента

В природе и технике существует огромное количество явлений, вызванных электромагнитной индукцией, то есть генерацией электродвижущей силы в пространстве, где существует изменяющееся магнитное поле. Все эти явления описываются одним замечательным, компактным уравнением, являющимся содержанием закона Фарадея.

Формулы и объяснение закона Фарадея

Большое открытие Майкла Фарадея (1791 — 1867) состояло в том, что он нашел правило, управляющие электромагнитной индукцией.

В результате многолетних экспериментов Фарадей заявил, что электродвижущая сила E появляется в проводнике при изменении магнитного поля, окружающего этот проводник, величина генерируемой электродвижущей силы пропорциональна скорости магнитного поля, и что направление индуцированной электродвижущей силы зависит от направления, в котором изменяется магнитное поле. Все эти факты содержатся только в одном уравнении:

где dΦ B — элементарный поток магнитного поля

В общем случае, даже когда проводников нет, электродвижущая сила равна циркуляции электрического поля E вдоль замкнутого контура:

Таким образом , закон Фарадея может быть записан в обобщенной форме:

Обратите внимание, сколько факторов может изменить значение потока:

  1. 1. Изменение значения вектора B ;
  2. 2. Изменение значения площади поверхности d A ;
  3. 3. Путем изменения угла между B и d А ;
  4. 4. Одновременное изменение B и d А ;
  5. 5. Одновременное изменение В и угла ;

6. Одновременное изменение d A и угла.

Нельзя не заметить появившийся здесь знак минус! Этот знак минус в законе Фарадея был назван правилом Ленца, который можно понимать как правило неповиновения в электродинамике.

Правило Ленца

Правило Ленца (знак минуса в законе Фарадея) определяет, что индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока.

Закон индукции Фарадея вместе с правилом Ленца представляет собой анимацию, в которой движение постоянного магнита вызывает создание электродвижущей силы в катушке, покрытой полем магнита.

Индукционный ток может создаваться не только в обмотках, но и в сплошных металлических блоках, помещенных в изменяющиеся магнитные поля.

Пример: так называемый вихревой ток, схематически показанный на рисунке:

Когда постоянное магнитное поле приложено к вращающейся алюминиевой мишени, то в мишени создаются два семейства противоположно направленных токов. Магнитное поле вихревых токов направлено так, что часть диска, которая выходит из поля, будет втянута обратно в поле, а часть диска, которая входит в область поля, будет вытеснена из этого поля.

Вихревые токи часто нежелательны, например, в сердечниках трансформатора, где они вызывают потери тепла. Для ограничения вихревых токов сердечники трансформатора выполнены в виде стопок из листового металла.

Уравнения Максвелла в интегральной форме

Закон Фарадея содержит: обобщенный закон Ампера, закон Гаусса для электрического поля и закон Гаусса для магнитного поля в системе из четырех уравнений Максвелла.

 Эти уравнения были представлены применительно к макроскопическим контурам и замкнутым поверхностям. По этой причине мы говорим, что это уравнения Максвелла в интегральной форме. Давайте посмотрим на эти уравнения еще раз.

Закон Фарадея

Обобщенный закон Ампера

Закон Гаусса для электрического поля

Закон Гаусса для магнитного поля

Интегральные уравнения Максвелла описывают электрические и магнитные явления в макроскопическом масштабе. Ведь для их формулировки нужны контуры, замкнутые поверхности, токи и потоки полей.

 Однако чрезвычайно важно знать, что происходит с электрическими и магнитными полями в отдельных точках, то есть в микроскопическом масштабе.

 Тогда можно будет описать такие явления как электромагнитные волны. 

Для микроскопического описания электрических и магнитных явлений используются уравнения Максвелла в дифференциальной форме. Чтобы получить их, мы применим две математические теоремы к уравнениям в интегральной форме: теорема Гаусса-Остроградского и теорема Стокса.

 Следует отметить, что преобразование уравнений Максвелла между целочисленной и дифференциальной формами получается в результате только математических операций. Это означает физическую эквивалентность этих двух форм уравнений Максвелла.

Теорема Гаусса-Остроградского и теорема Стокса, несмотря на их кажущуюся сложность, концептуально совершенно просты и легко интуитивно принимаются. Обе эти тему будут представлены в следующей статье.

Источник: https://meanders.ru/zakon-faradeja.shtml

Закон фарадея (закон электромагнитной индукции)

Обобщая результаты своих многочисленных опытов, Фарад ей пришел к количественному закону электромагнитной индукции.

Он показал, что всякий раз, когда происходит изменение потока магнитной индукции, пронизывающего контур, в контуре возникает индукционный ток; возникновение которого указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции.

Значение индукционного тока, а следовательно, и ЭДС электромагнитной индукции &1 определяются только скоростью изменения магнитного потока, т. е.

Пользуясь этими представлениями и выводами, можно соответственно прийти к формулировке закона электромагнитной индукции Фарадея.

Какова бы ни была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим контуром, возникающая в контуре ЭДС

  • Теперь о знаке
  • г} (АФ Л
  • Знак «минус» показывает, что увеличение потока > О
  • 1А' )

вызывает 0, т.е. поле индукционного тока направлено на-

(ДФ о)

встречу потоку; уменьшение потока -^-

> 0, т.е. направления потока и поля индукционного тока совпадают. Знак «минус» в формуле (1) является математическим выражением правила Ленца — общего правила для нахождения направления индукционного тока (см. п. 12.3).

Закон Фарадея можно сформулировать еще таким образом. ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром.

Этот закон является универсальным: ЭДС не зависит от способа изменения магнитного потока.

ЭДС электромагнитной индукции измеряется в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (см. п. 12.1), получим

В однородном магнитном поле движется отрезок проводника I. Вектор магнитной индукции В перпендикулярен проводнику и составляет с направлением скорости v проводника угол а.

Свободные заряды проводника движутся вместе с проводником. На движущиеся в магнитном поле заряды действует сила Лоренца (см. (4) п. 11.6):

Рис. 291

где Q0 — заряд частицы.

Под действием силы Лоренца (ее направление определяется по правилу левой руки (см. п. 11.6)) в проводнике произойдет разделение зарядов: положительные и отрицательные заряды накапливаются на противоположных концах проводника (рис. 291).

В результате внутри проводника появляется электрическое поле, напряженность Е которого направлена от сечения 1 к сечению 2.

Перемещение зарядов под действием силы Лоренца будет происходить до тех пор, пока сила, действующая на заряд в электрическом поле, не уравновесит силу Лоренца.

ЭДС индукции в отрезке проводника определяется работой силы Лоренца по перемещению единичного положительного заряда вдоль проводника

откуда, с учетом (1), следует

Формула (2) определяет ЭДС индукции для любого проводника длиной I, движущегося со скоростью v в однородном магнитном поле.

Источник: https://bstudy.net/748112/spravochnik/zakon_faradeya_zakon_elektromagnitnoy_induktsii

Закон электромагнитной индукции — формула

Правильное понимание физических процессов упрощает создание электрических машин, трансформаторов, других устройств. Рассмотренный ниже закон электромагнитной индукции формула помогает решать успешно различные практические задачи. Его применяют для расчетов опытные профессионалы и начинающие радиолюбители.

Электродвигатель выполняет свои функции на основе закона индукции

Явление электромагнитной индукции

Первые опыты в соответствующей области делал датчанин Эрстед. В 1821 году он обнаружил отклонение стрелки магнитного компаса, поднесенной к проводнику с электрическим током. Однако смысл отмеченных проявлений был сформулирован позднее.

Эксперименты заинтересовали Фарадея, который предположил возможность создания устройства для генерации энергии. В первой установке два проводника ученый разместил на небольшом расстоянии. Через один – с помощью вольтова столба подавал ток. Однако стрелка компаса, установленная возле второй цепи, никак не реагировала на такие действия.

К сведению. Более чувствительный прибор смог бы зарегистрировать ток в контрольном проводнике. Фактически эта схема является прообразом радио тракта. На этих принципах, в частности, функционируют беспроводные системы передачи данных Wi-Fi и линии мобильной связи.

В нижней части рисунка изображен второй (успешный) опыт Фарадея. Две катушки обеспечивают более сильное взаимодействие полей, поэтому измерение не вызвало больших затруднений. Прибор показал изменение напряжения в контрольном контуре.

Данное явление наблюдалось при следующих действиях:

  • включение/выключение источника тока;
  • перемещение катушек;
  • изменение скорости движения функциональных компонентов.

В 1831 году экспериментатор опубликовал вывод. Эта формулировка используется для определения базовых условий и зависимостей: «В замкнутом контуре изменяющийся магнитный поток создает электродвижущую силу». Отдельно были отмечены следующие особенности:

  • отрицательное значение ЭДС;
  • зависимость разницы потенциалов от скорости, с которой изменяется магнитное воздействие.

Несложно догадаться о том, что вращением рамки в магнитном поле обеспечивают генерацию электроэнергии

Опыты Фарадея стали основой для создания других известных изделий:

  • электродвигателей;
  • индукционных варочных панелей (плавильных печей);
  • трансформаторов;
  • измерительных приборов.

Магнитный поток

Явление электромагнитной индукции

Для практических расчетов, кроме сути явления, нужны соответствующие формулы (правила). Определение магнитного потока (Ф) базируется на векторном выражении индукции (В). Значение этого параметра зависит от площади контрольной площадки (S) и угла наклона силовых линий (α). Зависимости можно выражать следующим образом:

Ф = В * S * cos α.

Если обеспечить прямой угол между поверхностью и вектором индукции, множитель cosα исключается. Для такого расположения с применением стандартов СИ будет формулироваться следующее определение: единица магнитного потока (Вебер, Вб) равна индукции поля 1 Тесла (Тл), которая пронизывает площадку 1 м кв.

Закон электромагнитной индукции Фарадея

Формула магнитного потока

Отрицательное значение ЭДС – это обозначение противоположного знака по отношению к изменению Ф. Если скажут «запишите формулу закона электромагнитной индукции», следует не забывать о динамической природе рассматриваемого явления. Ниже приведены примеры для вычисления основных электрических параметров:

  • ЭДС одиночного контура E1 = – (ΔФ/Δt), где Δt – временной интервал;
  • при создании конструкции из N витков EN = – N*(ΔФ/Δt);
  • ток в проводнике (замкнутый контур с электрическим сопротивлением R) I = E/R;
  • движущийся со скоростью v проводник длиной D создает ЭДС E = В * D * v * sin α.
Читайте также:  Термоэлектричество, термоэлектродвижущая сила, термопары - справочник студента

Правило Ленца

Описание этого правила базируется на принципах классического закона сохранения энергии. Направление созданного индукцией тока определяет создание поля, препятствующего изменению внешнего магнитного потока. Именно этим объясняется появление минуса в основной формуле Фарадея.

Правило «правой руки» для проводника с током

Самоиндукция

Этим термином обозначают образование индуктивной ЭДС, если через проводник пропустить переменный ток. В соответствии с изложенным выше правилом Ленца, это явление сопровождается обратным воздействием на источник. Определенная задержка сопровождает увеличение/ уменьшение силы тока.

Эксперимент с параллельными элементами (катушкой индукции, резистором) покажет соответствующее замедление. Для наглядности в соответствующие цепи можно установить два индикатора (лампы накаливания). Рассчитать ЭДС самоиндукции можно по формуле:

Ec = -L*(ΔI/Δt).

Индуктивность

В предыдущем разделе отмечены особенности нового параметра – индуктивности. Фактически это корректирующий множитель, определяющий величину магнитного потока при прохождении через проводник тока:

Ф = L*I или L= Ф/I.

Единица измерения – 1 генри, в соответствии с правилами СИ, равна 1 Вб/ 1А. Величина L зависит от размеров, количества витков, материала сердечника индукционной катушки.

Энергия магнитного поля

Если продолжить эксперименты с индуктивностью и последовательно подсоединенной лампой, можно наблюдать интересное явление. После отключения источника питания образуется кратковременная вспышка, которую вызвала ЭДС самоиндукции. Соответствующая энергия (W) накоплена магнитным полем катушки. Ее можно вычислить с применением следующей формулы:

W = (L * I2)/2.

Эдс индукции в проводнике

Возникновение электродвижущей силы объясняется разной природой: при движении проводника – силой Лоренца, в статичном положении – воздействием электромагнитного поля на свободные электроны.

Паразитная индукция и тепловые потери

Рассмотренные явления могут применяться с пользой для разогрева кухонной посуды или плавки различных материалов. Однако в трансформаторах и электродвигателях паразитные вихревые индукционные токи – это негативное явление. Кроме прямых энергетических потерь, увеличивается вероятность аварийных ситуаций. При слишком высокой температуре повреждается изоляция.

Расслоение электромагнита

Уменьшают негативные проявления с помощью особых «наборных» конструкций. Если объединить несколько пластин, обеспечивается взаимная компенсация полей.

Принцип конструкции из нескольких слоев

При правильном расчете потери уменьшают (2) до 1-2% от уровня, который создает цельный аналог (1).

Паразитные потери в катушках индуктивности

Размеры проводника также имеют значение. Крупные элементы образуют паразитные токи, так как в определенном положении распределение линий магнитного поля неравномерно.

Пояснение к появлению в катушке паразитных токов

На рисунке схематично показаны различные силовые характеристики поля для участков по линиям a-b и c-d, соответственно. При уменьшении размеров проводника снижаются энергетические потери. В некоторых устройствах этот параметр определят класс энергетической эффективности.

Законы электролиза

Фарадей сформулировал закон электролиза в 30-х годах 19 века. Эти правила применяют для воспроизведения соответствующих технологических процессов на производстве и в домашних условиях. В математическом виде зависимости можно представить следующим образом:

m = (q/F) * (М/V),

где:

  • m – масса вещества, которое осаждается на рабочей пластине в процессе электролиза;
  • q – суммарный заряд;
  • F – постоянная Фарадея = 96, 485,33;
  • M – молярная масса;
  • V – количество элементарных зарядов на единичный ион (валентность).

Первый закон Фарадея для электролиза определяет пропорциональность осажденного вещества затраченной электроэнергии. Из базовой формулы понятно, что для этого случая существенное значение имеет пропущенный заряд (q).

Второй закон Фарадея устанавливает зависимость между количеством осажденного вещества и его свойствами. Для этой части определения подразумевается неизменный расход электроэнергии при электролизе разных материалов.

Основные формулы раздела «Электромагнитная индукция»

Для упрощения расчетов ниже приведены алгоритмы тематических вычислений:

  • закон магнитной индукции – E = – (ΔФ/Δt);
  • магнитный поток – Ф = В * S * cos α;
  • закон ЭДС для движущегося проводника – Ev = В * D * v * sin α;
  • электродвижущая сила самоиндукции катушки – Ec = -L*(ΔI/Δt);
  • магнитный поток (индуктивность) – Ф = L*I (L= Ф/I);
  • энергия, которую в соответствии с законом индукции накапливает катушка, – W = (L * I2)/2.

Как использовать приведенные формулы на практике, рассказано выше. В расчетах следует учитывать определенное значение электрических параметров, скорость перемещения и геометрию проводника.

Видео

Источник: https://amperof.ru/teoriya/zakon-elektromagnitnoj-indukcii-formula.html

Законы электромагнитной индукции Фарадея

После того как в начале XIX века было установлено, что электрические токи порождают магнитные поля (см.

Открытие Эрстеда, Закон Био—Савара), ученые заподозрили, что должна наблюдаться и обратная закономерность: магнитные поля должны каким-то образом производить электрические эффекты.

В 1822 году в своей записной книжке Майкл Фарадей записал, что должен найти способ «превратить магнетизм в электричество». На решение этой задачи у него ушло почти десять лет.

Не раз за эти годы он возвращался к этой проблеме, пока не придумал серию экспериментов, кажущихся крайне незамысловатым по современным меркам.

На железную катушку в форме бублика, например, он с одной стороны намотал плотные витки длинного, заизолированного от железного сердечника проводника, подключаемые к сильной электрической батарее, а с другой — плотные витки электрического проводника, подключенного к гальванометру — прибору для обнаружения электрического тока. Железный сердечник был нужен для «поимки» силовых линий образующегося магнитного поля и передачи их внутрь контура второй обмотки.

Первые результаты пришли не сразу. Сначала, сколько Фарадей ни наблюдал за своей установкой, при протекании электрического тока по первичной обмотке тока во вторичной обмотке не возбуждалось.

Могло показаться, что предположения Фарадея относительно «преобразования» электричества в магнетизм и обратно ошибочны.

И тут на помощь пришел случай: обнаружилось, к полному удивлению Фарадея, что стрелка гальванометра в цепи вторичной обмотки скачкообразно отклоняется от нулевого положения лишь при подключении или отключении батареи.

И тогда Фарадея посетило великое прозрение: электрическое поле возбуждается лишь при изменении магнитного поля. Самого по себе присутствия магнитного поля недостаточно. Сегодня эффект возникновения электрического поля при изменении магнитного физики называют электромагнитной индукцией.

Повторяя свои опыты и анализируя результаты, Фарадей вскоре пришел к выводу, что протекающий по контуру электрический заряд пропорционален изменению т. н. магнитного потока, проходящего через него.

Представьте себе, что замкнутый электропроводящий контур положен на лист бумаги, через который проходят силовые линии магнитного поля.

Магнитным потоком называется произведение площади контура на напряженность (условно говоря, число силовых линий) магнитного поля, проходящего через эту площадь перпендикулярно ей.

В первоначальной формулировке закон электромагнитной индукции Фарадея гласил, что при изменении магнитного потока, проходящего через контур, по проводящему контуру протекает электрический заряд, пропорциональный изменению магнитного потока, который возбуждается без всякого внешнего источника питания типа электрической батареи. Не будучи до конца удовлетворенным формулировкой, в которой фигурировала столь трудноизмеримая величина, как электрический заряд, Фарадей вскоре объединил свой закон с законом Ома и получил формулу (иногда ее принято называть вторым законом электромагнитной индукции Фарадея) для определения электродвижущей силы, возникающей в результате изменения магнитного потока через контур.

Изменить магнитный поток через контур можно тремя способами:

  • изменить площадь контура;
  • изменить интенсивность магнитного поля;
  • изменить взаимную ориентацию магнитного поля и плоскости, в которой лежит контур.

Последний метод работает, поскольку при таком движении изменяется проекция магнитного поля на перпендикуляр к площади контура, хотя ни напряженность магнитного поля, ни площадь контура не меняются. Это очень важно с практической точки зрения, поскольку именно это явление лежит в основе действия любого электрогенератора.

В самом простом варианте генератора проволочный контур вращается между полюсами сильного магнита. Поскольку в процессе вращения магнитный поток, проходящий через контур, постоянно меняется, по нему всё время протекает электрический ток.

Согласно правилу Ленца, на протяжении одного полуоборота контура ток будет течь в одну сторону, а на протяжении следующего полуоборота — в другую. Собственно, по этому принципу и вырабатывается так хорошо нам знакомый переменный ток, который поступает в дома жителей всего мира по сетям энергоснабжения.

И не важно, что частота его в Америке равна 60 герц, а в Европе — 50 герц; важен сам принцип его получения. А тот факт, что американские генераторы совершают 60 оборотов в секунду, а европейские — 50 оборотов в секунду, — это уже дань исторической традиции.

Электрогенераторы играли, играют и будут играть важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом.

Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел.

Электростанция же может размещаться весьма далеко от потребителей электроэнергии — и, тем не менее, снабжать ею заводы, дома и т. п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей, демонстрировал прототип электрогенератора Джону Пилу (John Peel), Канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, всё это очень интересно, а какой от всего этого толк?»

«Какой толк? — якобы удивился Фарадей. — Да вы знаете, сэр, сколько налогов в казну эта штука со временем будет приносить?!»

См. также:

Источник: https://elementy.ru/trefil/21083/Zakony_elektromagnitnoy_induktsii_Faradeya

Ссылка на основную публикацию
Adblock
detector