Вихревое электрическое поле — справочник студента

Помимо потенциального кулоновского электрического, существует вихревое поле, в котором имеются замкнутые линии напряженности. Зная общие свойства электрического поля, легче понять природу вихревого. Оно порождается изменяющимся магнитным полем.

Вихревое электрическое поле - Справочник студента

Что вызывает индукционный ток проводника, находящегося в неподвижном состоянии? Что такое индукция электрического поля? Ответ на эти вопросы, а также об отличии вихревого от электростатического и стационарного, токах Фуко, ферритах и другом вы узнаете из следующей статьи.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Как меняется магнитный поток

Магнитный поток Ф=BSosɑ может меняться через контур в двух вариантах: при неподвижном контуре в изменяющемся поле и в состоянии движения в поле, неподвижном или изменяющемся. Электродвижущая индукционная сила в обоих случаях будет подчиняться одному закону, но происходить будет по-разному.

Возникновение индукционного тока и силы, движущие заряд

Сначала нужно понять, как возникает индукционный ток. Для этого круглый виток из проволоки кладут в магнитное однородное тело. Если индукция в нем будет увеличиваться, то за ней последует и магнитный поток через поверхность. Вслед за этим возникнет ток. Если индукция магнитного поля станет меняться согласно линейному закону, ток останется постоянным.

Вихревое электрическое поле - Справочник студента

Вопрос в том, что за силы начинают двигать заряды в витке. Магнитное поле в катушке на это не способно, потому что оно оказывает влияние только на движущиеся заряды. Но ведь проводник в нем остается неподвижным!

На заряды оказывает действие электрическое поле. Но стационарное и электростатическое образуются зарядами, а индукционный ток — вслед за меняющемся магнитным полем!

Логично было бы предположить, что электроны начинает двигать электрическое поле, порождаясь в результате изменяющегося магнитного поля. Так, физик Масквелл пришел к выводу, что магнитное поле со временем зарождает электрическое.

Вихревое электрическое поле - Справочник студента

Электромагнитная индукция

Тогда электромагнитная индукция показывается с новой стороны, где главным свойством предстает порождение электрического поля магнитным. Проводящий контур здесь ничего не меняет.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Учет налога на добычу полезных ископаемых - справочник студента

Оценим за полчаса!

Проводник со свободными электронами становится прибором, позволяя выявить появляющееся электрическое поле, благодаря тому, что оно движется в проводнике.

Электромагнитная индукция проводника, находящегося в неподвижном состоянии, заключается не только в возникновении индукционного тока, но и электрического поля, начинающего движение электрических зарядов.

Вихревое электрическое поле, появившееся вслед за магнитным, совсем иного рода, нежели электростатическое. Оно не имеет прямой связи с зарядами, и напряженности на его линиях не начинаются и не заканчиваются. Это замкнутые линии, как у магнитного поля. Поэтому оно и называется вихревое электрическое поле.

Магнитная индукция

Магнитная индукция будет меняться тем быстрее, чем больше напряженность. Правило Ленца гласит: при увеличении магнитной индукции направление вектора напряженности электрополя создает левый винт с направлением другого вектора. То есть при вращении левого винта по направлению с линиями напряженности его поступательное перемещение станет таким же, как и у вектора магнитной индукции.

Вихревое электрическое поле - Справочник студента

Если же магнитная индукция будет убывать, то направление вектора напряженности создаст правый винт с направлением другого вектора.

Силовые линии напряженности имеют то же направление, что и индукционный ток. Вихревое электрическое поле действует на заряд с той же силой, что и до него.

Однако в данном случае его работа по перемещению заряда является отличной от нуля, как в стационарном электрическом поле. Так как сила и перемещение имеют одно направление, то и работа на всем протяжении пути по замкнутой линии напряженности будет прежней.

Работа положительного единичного заряда здесь будет равна электродвижущей силе индукции в проводнике.

Токи индукции в массивных проводниках

В массивных проводниках индукционные токи получают максимальные значения. Это происходит потому, что они имеют малое сопротивление.

Называются такие токи токами Фуко (это французский физик, исследовавший их). Их можно применять для изменения температуры проводников. Именно этот принцип заложен в индукционных печах, к примеру, бытовых СВЧ.

Он же применяется для плавления металлов.

Электромагнитная индукция используется и в металлических детекторах, расположенных в аэровокзалах, театрах и других общественных местах со скоплением большого количества людей.

Но токи Фуко приводят к потерям энергии для получения тепла. Поэтому сердечники трансформаторов, электрических двигателей, генераторов и других устройств из железа изготавливают не сплошными, а из разных пластин, которые друг от друга изолированы.

Пластины должны находиться строго в перпендикулярном положении относительно вектора напряженности, который имеет вихревое электрическое поле. Пластины тогда будут иметь максимальное сопротивление току, а тепла будет выделяться минимальное количество.

Вихревое электрическое поле - Справочник студента

Ферриты

Радиоаппаратура функционирует на высочайших частотах, где число достигает миллионов колебаний в секунду. Катушки сердечников здесь не будут эффективны, так как токи Фуко появятся в каждой пластине.

Существуют изоляторы магнитов под названием ферриты. Вихревые токи в них не появятся при перемагничивании. Поэтому потери энергии для тепла сводятся к минимальным. Из них изготавливают сердечники, используемые для высокочастотных трансформаторов, транзисторные антенны и так далее. Их получают из смеси первоначальных веществ, которую прессуют и обрабатывают термическим путем.

Если магнитное поле в ферромагнетике быстро изменяется, это ведет к появлению индукционных токов. Их магнитное поле будет препятствовать изменению магнитного потока в сердечнике. Поэтому поток не будет меняться, а сердечник — перемагничиваться. Вихревые токи в ферритах так малы, что могут быстро перемагничиваться.

Источник: https://www.syl.ru/article/241720/mod_vihrevoe-elektricheskoe-pole-zarojdenie-i-svoystva

Вихревое поле это..

Вихревое электрическое поле - Справочник студента Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Вихревое электрическое поле - Справочник студента Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Вихревое электрическое поле - Справочник студента

Подскажите, пожалуйста, как можно дать определение вихревому полю? Как мне продолжить фразу: вихревое поле – это… Приведите пример вихревого поля. Чем оно отличается от невихревого поля?

1 ответ

Вихревое поле определяют следующим образом: Вихревое поле – это векторное поле, которое имеет замкнутые силовые линии. Примером вихревого поля может служить магнитное поле.

Если рассмотреть в магнитном поле замкнутую поверхность, то магнитный поток сквозь рассматриваемую поверхность равен всегда нулю. Что означает: количество силовых линий, которые входят в нашу поверхность равно числу силовых линий выходящих из нее.

В математическом виде тот факт, что магнитные линии не имеют начала и конца записывают как (см. раздел «Интегральные уравнения Максвелла«):

    Вихревое электрическое поле - Справочник студента

Другим примером вихревого поля может служить индукционное электрическое поле. Данное поле существенным образом отличается от электростатического поля. Силовые линии индукционного электрического поля являются замкнутыми. Это поле создают переменные магнитные поля.

Источники индукционного электрического поля указать не представляется возможным. Работа сил поля при перемещении заряда по замкнутому пути отлична от  нуля.

Для сравнения с вихревыми полями приведем пример характеристик электростатического поля, которое не является вихревым. Электростатическое поле создают стационарные заряды. Линия этого поля начинаются на положительных зарядах и заканчиваются на отрицательных.

Силовые линии разомкнуты. Поле является потенциальным (работа электростатического поля по замкнутому пути равна нулю).

Источник: http://ru.solverbook.com/question/vixrevoe-pole-eto/

Вихревое электрическое поле

Выше мы показали, что «максвелловский» вариант основного закона электромагнитной индукции (ЭМИ) не согласуется с экспериментами Фарадея. В максвелловской формулировке

Вихревое электрическое поле - Справочник студента (1)

отсутствуют электрические заряды, которые в трактовке Фарадея играют решающую роль. Можно ли на этом основании утверждать, что соотношение (1) неверно? Разумеется — нет.

Ведь есть множество других экспериментов и вариантов практического использования электромагнитной индукции, где этот закон хорошо выполняется! На мое замечание, что закон Максвелла неверен, один весьма уважаемый доктор физ.-мат.

наук удивился: «Позвольте! Но ведь никто не отменял электромагнитную индукцию в замкнутом контуре! Да и циклические ускорители ведь как-то работают!» В этом замечании указано на два наиболее важных явления, которые — по общему мнению — неоспоримо подтверждают правильность максвелловской формулировки ЭМИ.

Давайте, разберемся: действительно ли ЭДС индукции в замкнутом контуре генерируется непосредственно переменным магнитным полем — без участия зарядов, как это следует из (1)? Мы видели, что возникновение ЭДС индукции в замкнутом контуре можно объяснить по способу пересечения, не прибегая к методу индукции. Но из этого ещё не следует, что переменное магнитное поле не может создавать поле электрическое.

Кроме обсуждавшихся на страницах Парадоксы ЭМИ и «Двуликая» индукция свойств зависимость (1) обладает ещё одним свойством, о котором мы ещё не говорили: если переменный магнитный поток генерирует электрическое поле без участия электрических зарядов, то линии этого поля могут быть только непрерывными (замкнутыми), а само поле может быть только вихревым.

Сторонники максвелловской трактовки ЭМИ едины во мнении, что в замкнутом контуре «работает» именно вихревое электрическое поле.

В качестве обоснования этого утверждения ссылаются на положение теории поля, согласно которому работа в потенциальном поле по любой замкнутой кривой равна нулю.

Работа электрического поля по перемещению единицы заряда в замкнутом проводящем контуре отлична от нуля — она равна ЭДС индукции. Следовательно, электрическое поле, индуцируемое в таком контуре, может быть только вихревым. Так ли это?

Вихревое электрическое поле - Справочник студента

На рисунке 1,a показана обычная замкнутая электрическая цепь, в которой генератор создает ток I = Э/R, где Э — ЭДС генератора, а R — полное сопротивление контура. Рассмотрим некоторый однородный проводящий контур, в котором переменный магнитный поток Ф создает круговую индукционную ЭДС Э (см. Рис. 1,b).

Эта схема отличается от цепи на Рис. 1,a лишь тем, что сосредоточенные параметры R и Э здесь распределены по всей длине контура. На участке сопротивлением r = αR генерируется ЭДС

Вихревое электрическое поле - Справочник студента (2)

Здесь α — доля от общей длины контура, которую составляет выделенный участок, а I — ток в контуре. Для всего контура α = 1 и соотношение (2) дает равенство Э = IR — закон Ома для замкнутой цепи.

Выделенный участок контура можно считать локальным «микрогенератором» с внутренним сопротивлением r. Падение потенциала Δφ = Ir является внутренним падением напряжения в таком «генераторе».

Внешнее напряжение на «клеммах» генератора равно u = ε − Δφ = ε − Ir, что (с учетом (2)) дает u  = 0.

Таким образом, напряжение между любыми двумя точками замкнутого проводящего контура, в котором создается индукционная ЭДС, равно нулю! Вывод достаточно неожиданный, но он подтверждается экспериментом.

Физический смысл этого результата в том, что вся электрическая энергия, произведенная на любом участке замкнутого контура по индукционному механизму, целиком теряется на этом же участке (переходит в тепло). Каждый участок контура является как бы одновременно и генератором, и нагрузкой.

На языке электротехники весь индукционный контур (и любую его часть!) можно уподобить короткозамкнутому генератору, в котором вся произведенная электроэнергия расходуется на «собственные нужды».

Таким образом, в замкнутом проводящем контуре индуктируется круговая, но потенциальная ЭДС.

А как же быть с положением теории поля, утверждающим, что в потенциальном поле циркуляция вектора по любой замкнутой кривой (в нашем случае это и есть ЭДС в контуре) равна нулю? Дело в том, что это положение верно лишь для консервативных полей (например, в вакууме), но неприменимо для неконсервативных (диссипативных) систем, каковой является металлический проводящий контур. В учебных пособиях этот случай нигде не рассматривается.

Чтобы доказать вихревую природу индукционного электрического поля, сторонники максвелловской модели электромагнитной индукции прибегают к чудесам «научной эквилибристики». Недавно мне попался на глаза перевод статьи из журнала «Amer. J. Physics» 1982 года [1].

Стараясь доказать вихревую природу электрического поля в проводящем замкнутом контуре, автор договорился до того, что показания вольтметра, измеряющего разность потенциалов между двумя точками индукционного кольца, зависят от того… с какой стороны (справа или слева от кольца) находится вольтметр (?!).

Является ли приведенный выше анализ индукционного процесса в проводящем контуре достаточным основанием, чтобы утверждать, что вихревое электрическое поле не существует? Нет, не является! («Ведь циклические ускорители как-то работают!»).

Действительно — в циклическом ускорителе нет другого источника ускорения, кроме индуцированного кругового электрического поля. Рассмотрим, например, работу циклического индукционного ускорителя электронов — бетатрона.

Ускорение электронов происходит в вакуумированной тороидальной камере, находящейся между полюсами электромагнита, который питается переменным (синусоидальным) током с частотой порядка 100 Гц. Магнитное поле в бетатроне выполняет две функции: 1) создает ускоряющее электрическое поле и 2) удерживает ускоряемые электроны на круговой орбите.

Ускорение электронов происходит импульсами — во 2-ю и 4-ю четверть периода. Вот краткое описание работы бетатрона, которое приводит в своем учебнике И. В. Савельев:

«В начале импульса в камеру подается из электронной пушки пучок электронов, который подхватывается вихревым электрическим полем (курсив мой — К. К.

) и начинает со все возрастающей скоростью двигаться по круговой орбите.

За время нарастания магнитного поля (~10-3 с) электроны успевают сделать до миллиона оборотов и приобретают энергию, которая может достигать нескольких сотен МэВ» [2].

Сомнений в том, что электроны в бетатроне ускоряются вихревым электрическим полем, никогда ни у кого не возникало. Вот определение из «Большого энциклопедического словаря» последнего выпуска [3]:

Бетатрон, циклич. ускоритель эл-нов, в к-ром ускорение производится вихревым электрич. полем, индуцируемым перем. магн. полем, охватываемым круговой орбитой частиц.

Аргументы, использованные в предыдущем примере, здесь не работают: если пренебречь электромагнитным излучением электронов и считать вакуум в ускорителе идеальным, то электрическое поле в ускорительной камере можно считать консервативным. Сам факт, что электроны ускоряются, говорит о том, что круговая ЭДС в бетатроне отлична от нуля, и, следовательно, поле в ускорительной камере вихревое.

Читайте также:  Теория л.с. выгодского - справочник студента

Так говорит теория поля. Но при этом не учитывается одно весьма существенное обстоятельство. Магнитное поле в бетатроне (и других циклических ускорителях) изменяется со временем.

Поэтому возникающее электрическое поле зависит не только от пространственных координат, но и от времени. Его следует рассматривать в четырёхмерном пространстве, одной из координат которого является время (так называемое «пространство Минковского»).

В этом пространстве плоская круговая траектория электрона превращается в «спираль», растянутую вдоль оси времени.

За то время, что электрон делает полный оборот (замкнутый в трёхмерном пространстве), изменяется напряженность электрического поля вдоль траектории.

Поэтому, сделав полный оборот и вернувшись в ту же пространственную точку траектории, электрон оказывается в другой точке пространства Минковского, потенциал которой отличен от потенциала сходственной точки на предыдущем витке «спирали». Эта разность потенциалов и определяет энергию ускорения электрона на одном витке траектории.

Силовые линии такого (винтового) поля разомкнуты. Но вихревое поле не может быть разомкнутым! Таким образом, электрическое поле и в циклических ускорителях может быть только потенциальным.

Итак, в двух наиболее «убедительных» случаях использования электромагнитной индукции вихревое электрическое поле «не работает».

Можно ли считать, что оно отсутствует и во всех остальных случаях применения индукционного процесса? Конечно — нет! Ведь ещё не все эксперименты сделаны, и нет гарантии, что где-то вихревое электрическое поле все-таки существует.

Для этого необходимо ответить на главный вопрос: «Создает ли переменный магнитный поток электрическое поле?». Если создает, то это поле может быть только вихревым. Если не создает, то… что же он (магнитный поток) создает?

Ответ на этот вопрос можно было бы получить, если провести прямые измерения электрического поля, создаваемого переменным магнитным потоком согласно зависимости (1). Мне такие эксперименты не известны. Буду благодарен, если читатели приведут мне такие примеры. Но мне кажется, что осуществить такой эксперимент… нельзя.

Единственный способ обнаружить электрическое поле — это поместить в него электрический заряд. Но тогда невозможно отличить «магнитную силу», действующую на электрический заряд в переменном магнитном поле, от действия на заряд самого электрического поля.

Можно показать, что обе эти силы равны по модулю и противоположны по направлению.

Между фарадеевским и максвелловским механизмами электромагнитной индукции, безусловно, существует принципиальное отличие. Но как его обнаружить?.. При ближайшем рассмотрении оказывается, что в этом… и нет необходимости!

С тех пор, как было показано, что электрические и магнитные явления связаны единой электромагнитной природой, теоретики испытывают неудовлетворенность «асимметрией» электрических и магнитных процессов.

Почему электрические поля разомкнуты, а магнитные — замкнуты? В чем заключается «Божий промысел»? Попытки «симметризировать» электродинамику, сблизив природу электрических и магнитных полей, предпринимаются давно. «Разомкнуть» магнитное поле могли бы «магнитные заряды» (так называемые «монополи Дирака»).

Многие десятилетия их ищут в космических лучах, под землей, в морских глубинах… Теоретики уже подсчитали их «магнитный заряд», массу, спин и пр. характеристики. Но обнаружить монополи пока не удается…

Но если не удается «разомкнуть» магнитное поле, то… не «замкнуть» ли поле электрическое? Такие попытки оказались гораздо результативнее — замкнутое («вихревое») электрическое поле, «изобретенное» в конце XIX века, уже давно утвердилось в электродинамике как физическая реальность. То есть, не умея понять «Божий промысел», мы смогли его… обмануть!

По своим свойствам электрическое и магнитное поля отличаются принципиально:

Магнитное поле — это поле замкнутое, «вихревое» (см. уточнение). Вектор магнитного поля (магнитная индукция) по своей физической природе характеризует момент сил. Электрическое поле — по определению — это поле силовое.

Линии этого поля образуются силовым вектором E — напряженностью электрического поля, которая в любой точке поля связана с электрическим потенциалом φ в этой точке известным соотношением E = —grad φ .

Циркуляция напряженности по любому конечному отрезку силовой линии Δφ = ∫Edl представляет собой разность потенциалов на этом отрезке. Из теории поля известно, что любое силовое поле всегда порождает скалярное — потенциальное (энергетическое) поле.

Вихревое поле не обладает потенциалом, а потенциальное поле не может быть вихревым. Так как электрическое поле (любой конфигурации!) – это поле силовое, то можно сделать однозначный вывод, что электрическое поле не может быть вихревым.

Это заключение, базирующееся на основных понятиях теории поля, можно считать окончательным «приговором» не только «вихревому электрическому полю», но и попыткам «симметризации» полей в электродинамике, и самой идее взаимодействия полей. В частности это означает, что соотношение (1) лишено физического смысла.

Полтора века в электродинамике использовался фантом — не существующее в природе «вихревое электрическое поле». Это поле «работало» в трансформаторах и генераторах, в электродвигателях и ускорителях, хотя, не обладая энергетическим потенциалом, оно не может совершать работу.

Этот очевидный вывод из основных положений теории поля почему-то многие десятилетия оставался не замеченным.

Только по этой причине в настоящее время во всех расчетах используется максвелловская формулировка основного закона электромагнитной индукции, соответствующая «букве» (цифре!), но противоречащая «духу» (природе) этого важнейшего электродинамического процесса.

Чтобы окончательно расставить все точки над i, приведенные выше описания индукционных процессов необходимо дополнить соображениями о физической природе электромагнитных взаимодействий, изложенными ранее. Но это занятие придется пока отложить, потому что нам предстоит не менее серьезный разговор о том, как работают… батарейки в карманном фонарике.

Далее: Электрическая энергия.

Ссылки

[1] Ромер Р. Что измеряют «вольтметры»? Закон Фарадея для многосвязной области. [Перевод из: Amer. J. Phys. December 1982. P. 1069].
[2] Савельев И. В.. Курс общей физики. М.: Физматлит, 1978. Т. 2. С. 216.
[3] БЭС, Физика. М.: Научное изд. БРЭ, 1999. С. 52.

Источник: http://www.electrodynamics.narod.ru/eddy-electric-field.html

Инфофиз — мой мир..

Вихревое электрическое поле - Справочник студента

Переменное магнитное поле порождает инду­цированное электрическое поле. Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.

   Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток.

В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя.

Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

  •    Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.
  • Вихревое электрическое поле - Справочник студента
  •    Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

   В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

   Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

   Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.

  1.    Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
  2. Отличие вихревого электрического поля от электростатического
  3. 1) Оно не связано с электрическими зарядами; 2) Силовые линии этого поля всегда замкнуты; 
  4. 3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.
электростатическое поле индукционное электрическое поле( вихревое электр. поле )
1. создается неподвижными электр. зарядами 1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты — потенциальное поле 2. силовые линии замкнуты — вихревое поле
3. источниками поля являются электр. заряды 3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции

Источник: http://infofiz.ru/index.php/mirfiziki/formuly/319-velp

Вихревое электрическое поле — Класс!ная физика

«Физика — 11 класс»

Какова причина появления индукционного тока? Изменение магнитного потока через контур.

  • Изменение магнитного потока через контур может происходить: 1) в случае неподвижного проводящего контура, помещенного в изменяющееся во времени поле; 2) в случае проводника, движущегося в магнитном поле, которое может и не меняться со временем.
  • Причем в обоих случаях происхождение ЭДС индукции различно.

Вихревое электрическое поле - Справочник студента

Пусть круговой проволочный виток радиусом r находится в переменном во времени однородном магнитном поле. Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток.

При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен.

Какие же силы заставляют заряды в витке двигаться? Само магнитное поле может действовать только на движущиеся заряды, а проводник неподвижен. Но, на заряды, причем как на движущиеся, так и на неподвижные, может действовать электрическое поле.

Откуда оно здесь взялось?

Изменяясь во времени, магнитное поле порождает электрическое поле — к такому выводу впервые пришел Дж. Максвелл.

Главное в явлении электромагнитной индукции — это процесс порождения меняющимся магнитным полем поля электрического, которое приводит в движение электрические заряды в этом проводнике.

Вихревое электрическое поле - Справочник студента

Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое. Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобные линиям индукции магнитного поля.

  1. Это так называемое вихревое электрическое поле.
  2. Чем быстрее меняется магнитная индукция, тем больше напряженность вихревого электрического поля. По правилу Ленца:
  3. — при возрастании магнитной индукции

направление вектора напряженности электрического поля образует левый винт с направлением вектора магнитной индукции, т.е. при вращении винта с левой нарезкой в направлении линий напряженности электрического поля поступательное перемещение винта совпадает с направлением вектора магнитной индукции. — при убывании магнитной индукции направление вектора напряженности образует правый винт с направлением вектора магнитной индукции.

Сила, действующая со стороны вихревого электрического поля на заряд q (сторонняя сила), равна:

  • Работа вихревого электрического поля
  • В отличие от стационарного электрического поля работа вихревого поля по перемещению заряда q на замкнутом пути не равна нулю.
  • При перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению.
  • Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.
  • Индукционные токи в массивных проводниках.

В массивных проводниках, чье сопротивление мало, индукционные токи очень велики, и вызывают сильный разогрев. Такие токи называются токами Фуко.

Разогрев на основе индукционных токов используется в индукционных печах (например, в СВЧ-печах), для плавки металлов. Индукционные токи регистрируются в детекторах металла, устанавливаемых при контроле на входе.

Однако во многих устройствах возникновение токов Фуко приводит к потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д. делают не сплошными, а состоящими из отдельных изолированных пластин, что уменььшает токи Фуко и, следовательно, потери энергии.

На очень высоких частотах применение сердечников катушек из отдельных пластин уже не дает нужного эффекта. Здесь используют ферриты — магнитные изоляторы, в которых при перемагничивании вихревые токи не возникают. Из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитная индукция. Физика, учебник для 11 класса — Класс!ная физика

Электромагнитная индукция. Магнитный поток — Направление индукционного тока. Правило Ленца — Закон электромагнитной индукции — ЭДС индукции в движущихся проводниках. Электродинамический микрофон — Вихревое электрическое поле — Самоиндукция. Индуктивность. Энергия магнитного поля тока — Электромагнитное поле — Примеры решения задач — Краткие итоги главы

Источник: http://class-fizika.ru/11_11.html

Вихревое электрическое поле

Допустим, что неподвижный проволочный контур с индукционным током находится в переменном магнитном поле. Наличие индукционного тока будет свидетельствовать о том, что изменения магнитного поля вызывают возникновение сторонних сил, которые действуют на носители тока.

Эти сторонние силы не являются магнитными (магнитные силы не совершают работы над зарядами), не имеют отношения к химическим и тепловым процессам. Следовательно, индукционный ток вызван в появившимся проводнике электрическим полем. Пусть напряженность этого нового поля равна $overrightarrow{E_B}.

$ ЭДС индукции (${{mathcal E}}_i$) при этом равна циркуляции вектора $overrightarrow{E_B}$ по нашему контуру ($L$):

  • С другой стороны, мы можем записать ${{mathcal E}}_i$ как:
  • Приравняем правые части выражений (1) и (2), получим:
  • где магнитный поток определим как:
  • Подставим вместо Ф правую часть выражения (4) в уравнение (3), следовательно:
  • где интеграл в правой части равенства берется по произвольной поверхности, которая опирается на контур. Так как мы условились, что контур и поверхность неподвижны, то операции дифференцирования по времени и интегрирования по поверхности можно поменять местами:

Вихревое электрическое поле - Справочник студента

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

где в общем случае вектор индукции магнитного поля может зависеть и от времени, и от координат, под знаком интеграла мы используем частную производную по времени (интеграл $intlimits_S{overrightarrow{B}doverrightarrow{S}}$ — функция только от времени). Левую часть равенства (6) можно преобразовать по теореме Стокса, и результат будет:

Так как поверхность интегрирования выбиралась произвольно, то выполняется равенство:

Максвелл заключил, что переменное (во времени) магнитное поле вызывает возникновение в пространстве электрического поля, причем независимо от наличия в этом пространстве проводящего контура. Наличие контура всего лишь позволяет обнаружить электрическое поле по наличию в контуре индукционного тока.

Электрическое поле ($overrightarrow{E_B}$), порождаемое переменным магнитным полем принципиально отличается от электростатического поля ($overrightarrow{E_q}$), которое образуют неподвижные заряды. Электростатическое поле является потенциальным, линии напряженности этого поля начинаются и заканчиваются на зарядах. При этом в любой точке электростатического поля выполняется равенство:

что означает, что данное поле безвихревое. Для электрического поля, которое породило переменное магнитное поле, мы получили, что $rotoverrightarrow{E_B}
e 0$ (8). Это значит, что данное поле является вихревым. Линии напряженности поля $overrightarrow{E_B}$ замкнуты.

В общем случае эклектическое поле ($overrightarrow{E}$) создается зарядами и переменным магнитным полем:

В результате, если найти ротор от правой и левой части уравнения (10), получим одно из основных уравнений теории Максвелла:

Пример 1

Задание: Поясните, какова физическая природа сторонних сил, которые действуют на заряды в переменном магнитном поле и порождают ЭДС индукции в неподвижном проводнике?

Решение:

Эмпирическим путем доказано, что ЭДС индукции никак не зависит от рода вещества проводника. Проводник может быть однородным и неоднородным, проводником первого рода или электролитом.

ЭДС не зависит от состояния проводника, его температуры, распределения температуры.

Все это доказывает, что сторонние силы не связаны с изменением свойств проводника в магнитном поле, а объясняются самим магнитным полем.

Причина возникновения ЭДС индукции заключается в появлении электрического поля, при этом проводники играют роль детекторов поля. Под воздействием поля электроны проводимости в проводнике начинают двигаться, если проводник замкнут, то по ней идет индукционный ток.

Надо отметить, что сторонние силы не связаны с химическими и тепловыми процессами в проводнике, эти силы — немагнитного происхождения. Индукционный ток вызывается электрическим полем, которое порождает переменное магнитное поле.

Читайте также:  Биномиальное распределение - справочник студента

Пример 2

Задание: Объясните принцип работы бетатрона.

Решение:

Бетатрон — ускоритель электронов. Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока. Сила, с которой вихревое электрическое поле действует на заряженную частицу (в нашем случае на электрон) как и в электростатическом поле, может быть вычислена, если использовать принцип суперпозиции и выражение для элемента силы:

[doverrightarrow{F}=q_edoverrightarrow{E}left(2.1
ight).]

Но в вихревом электрическом поле работа поля при перемещении электрона по замкнутой траектории не равна нулю. Так как при движении по замкнутой линии напряженности электрического поля (рис.

1) работа на всех участках пути имеет один знак, так как сила и перемещение сонаправлены.

(Работа вихревого электрического поля по перемещению единичного положительного заряда по замкнутой траектории есть ЭДС индукции в неподвижном проводнике).

Вихревое электрическое поле - Справочник студента

Рисунок 1.

В бетатроне магнитное поле мощного электромагнита изменяется с высокой частотой, таким образом, создаются сильные вихревые электрические поля, которые совершают работу над электронами. Электроны ускоряются до скорости, близкой к скорости света в кольцевой вакуумной камере.

Источник: https://spravochnick.ru/fizika/uravneniya_maksvella/vihrevoe_elektricheskoe_pole/

Вихревое электрическое поле

Вспомним о том, что правило Ленца позволяет определять направление индукционного тока в контуре, находящемся во внешнем магнитном поле с переменным потоком. Отталкиваясь от этого правила, удалось сформулировать закон электромагнитной индукции.

  • Закон электромагнитной индукции
  • При изменении магнитного потока, пронизывающего площадь контура, в этом контуре возникает электродвижущая сила, численно равная скорости изменения магнитного потока, взятой со знаком минус.

Как же возникает эта электродвижущая сила? Оказывается, ЭДС в проводнике, который находится в переменном магнитном поле, связано с возникновением нового объекта – вихревого электрического поля.

Рассмотрим опыт. Есть катушка из медной проволоки, в которую вставлен железный сердечник для того, чтобы усилить магнитное поле катушки. Катушка через проводники подключена к источнику переменного тока. Также есть виток из проволоки, помещенной на деревянную основу. К этому витку подключена электрическая лампочка. Материал проволоки покрыт изоляцией. Основание катушки сделано из дерева, т. е.

из материала, не проводящего электрический ток. Каркас витка также изготовлен из дерева. Таким образом, исключается всякая возможность контакта лампочки с цепью, подключённой к источнику тока. При замыкании источника лампочка загорается, следовательно, в витке протекает электрический ток – значит, сторонние силы в этом витке совершают работу. Необходимо выяснить, откуда берутся сторонние силы.

Магнитное поле, пронизывающее плоскость витка, не может вызвать появление электрического поля, поскольку магнитное поле действует только на движущиеся заряды.

Согласно электронной теории проводимости металлов, внутри них существуют электроны, которые могут свободно двигаться внутри кристаллической решётки. Однако, это движение в отсутствие внешнего электрического поля носит беспорядочный характер.

Такая беспорядочность приводит к тому, что суммарное действие магнитного поля на проводник с током равно нулю. Этим электромагнитное поле отличается от электростатического, которое действует и на неподвижные заряды. Так, электрическое поле действует на движущиеся и на неподвижные заряды.

Однако, та разновидность электрического поля, которая, изучалась ранее, создаётся только электрическими зарядами. Индукционный ток, в свою очередь, создаётся переменным магнитным полем.

Предположим, что электроны в проводнике приходят в упорядоченное движение под действием некой новой разновидности электрического поля. И это электрическое поле порождается не электрическими зарядами, а переменным магнитным полем. К подобной идее пришли Фарадей и Максвелл. Главное в этой идее то, что переменное во времени магнитное поле порождает электрическое.

Проводник с имеющимися в нём свободными электронами позволяет обнаружить это поле. Это электрическое поле приводит в движение электроны, находящиеся в проводнике.

Явление электромагнитной индукции состоит не столько в появлении индукционного тока, сколько в появлении новой разновидности электрического поля, которое приводит в движение электрические заряды в проводнике (рис. 1).

Вихревое электрическое поле - Справочник студента

Рис. 1. Вихревое поле (Источник)

Вихревое поле отличается от статического. Оно не порождается неподвижными зарядами, следовательно, линии напряженности этого поля не могут начинаться и заканчиваться на заряде.

Согласно исследованиям, линии напряжённости вихревого поля представляют собой замкнутые линии подобно линиям индукции магнитного поля.

Следовательно, это электрическое поле является вихревым – таким же, как и магнитное поле.

Второе свойство касается работы сил этого нового поля. Изучая электростатическое поле, выяснили, что работа сил электростатического поля по замкнутому контуру равна нулю.

Так как при движении заряда в одном направлении перемещение и действующая сила сонаправлены и работа положительна, то при движении заряда в обратном направлении перемещение и действующая сила противоположно направлены и работа отрицательна, суммарная работа будет равна нулю.

В случае вихревого поля работа по замкнутому контуру будет отлична от нуля.

Так при движении заряда вдоль замкнутой линии электрического поля, имеющего вихревой характер, работа на разных участках будет сохранять постоянный знак, поскольку сила и перемещение на разных участках траектории будут сохранять одинаковое направление друг относительно друга.

Работа сил вихревого электрического поля по перемещению заряда вдоль замкнутого контура отлична от нуля, следовательно, вихревое электрическое поле может порождать электрический ток в замкнутом контуре, что совпадает с результатами эксперимента. Тогда можно утверждать то, что сила, действующая на заряды со стороны вихревого поля, равна произведению переносимого заряда на напряжённость этого поля.

                                                                   (9.2.)

Эта сила и есть сторонняя сила, совершающая работу. Работа этой силы, отнесённая к величине перенесённого заряда, – ЭДС индукции. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца и совпадает с направлением индукционного тока.

В неподвижном контуре, находящемся в переменном магнитном поле, возникает индукционный электрический ток. Само магнитное поле не может быть источником сторонних сил, поскольку оно может действовать только на упорядоченно движущиеся электрические заряды. Электростатического поля быть не может, поскольку оно порождается неподвижными зарядами.

После предположения о том, что переменное во времени магнитное поле порождает электрическое поле, узнали, что это переменное поле носит вихревой характер, т. е. его линии замкнуты. Работа вихревого электрического поля по замкнутому контуру отлична от нуля.

Сила, действующая на переносимый заряд со стороны вихревого электрического поля, равна величине этого переносимого заряда, умноженной на напряжённость вихревого электрического поля. Эта сила и является той сторонней силой, которая приводит к возникновению ЭДС в контуре. Электродвижущая сила индукции, т. е.

отношение работы сторонних сил к величине переносимого заряда, равна взятой со знаком минус скорости изменения магнитного потока. Направление вектора напряженности вихревого электрического поля в каждой точке линий напряжённости определяется по правилу Ленца.             

Список рекомендованной литературы

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416 с.: ил., 8 л. цв. вкл.
  2. Генденштейн Л.Э., Дик Ю.И., Физика 11. – М.: Мнемозина.
  3. Тихомирова С.А., Яровский Б.М., Физика 11. – М.: Мнемозина.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Рекомендованное домашнее задание

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416 с.: ил., 8 л. цв. вкл., ст. 119, в. 1, з. 5.
  2. Внутри стеклянного кольца с разрезом расположен постоянный магнит (рис. 2). Что будет наблюдаться на концах разреза АВ в процессе удаления магнита из кольца влево? Вихревое электрическое поле - Справочник студента

Рис. 2. Постоянный магнит (Источник).

  1. Как объяснить тот факт, что удар молнии может расплавить предохранители, вывести из строя чувствительные электроприборы и полупроводниковые устройства?
  2. * При размыкании кольца в катушке возникла ЭДС самоиндукции 300 В. Какова напряжённость вихревого электрического поля в витках катушки, если их количество равно 800, а радиус витков – 4 см?

Источник: http://msk.edu.ua/ivk/Fizika/ST/Z41/Vihrevoe_elektricheskoe_pole.php

Вихревое электрическое поле — Гипермаркет знаний

Гипермаркет знаний>>Физика и астрономия>>Физика 11 класс>> Вихревое электрическое поле

                                            § 12     ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Магнитный поток Ф= BS cos . Изменение магнитного потока через контур может происходить: 1) в случае неподвижного проводящего контура, помещенного в изменяющееся во времени поле; 2) в случае проводника, движущегося в магнитном поло, которое может и не меняться со временем. Значение ЭДС индукции в обоих случаях определяется законом (2.1), по происхождение этой ЭДС различно.

Рассмотрим сначала первый случай возникновения индукционного тока. Поместим круговой проволочный виток радиусом r в переменное во времени однородное магнитное поле (рис. 2.8).

Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток.

При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен.

Какие же силы заставляют заряды в витке двигаться? Само магнитное поле, пронизывающее катушку, этого сделать не может, так как магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нем электронами неподвижен.

Кроме магнитного поля, на заряды, причем как на движущиеся, так и на неподвижные, действует еще электрическое поле. Но ведь те поля, о которых пока шла речь (электростатичсское или стационарное), создаются электрическими зарядами, а индукционный ток появляется в результате действия меняющегося магнитного поля.

Поэтому можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается меняющимся магнитным полем. Тем самым утверждается новое фундаментальное свойство поля: изменяясь во времени, магнитное поле порождает электрическое поле.

К этому выводу впервые пришел Дж. Максвелл.

Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем — это процесс порождения полем магнитным поля электрического. При этом наличие проводящего   контура,   например катушки, не меняет существа процесса. Проводник с запасом свободных электронов (или других частиц) играет роль прибора: он лишь позволяет обнаружить возникающее электрическое поле.

Вихревое электрическое поле - Справочник студента

Поле приводит в движение электроны и проводнике и тем самым обнаруживает себя. Сущность явления электромагнитной индукции и неподвижном  проводнике состоит  не столько в появлении индукционного тока, сколько в возникновении электрического поля, которое приводит в движение электрические заряды.

Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое.

Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобныe линиям индукции магнитного поля. Это так называемое вихревое электрическое поле (рис. 2.9).

Вихревое электрическое поле - Справочник студента

Чем быстрее меняется магнитная индукция, тем болыпе напряженность электрического поля. Согласно правилу Ленца при возрастании магнитной индукции направление вектора напряженности электрического поля образует левый винт с направлением вектора .

Это означает, что при вращении винта с левой нарезкой в направлении линий напряженности электрического поля поступательное перемещение винта совпадает с направлением вектора магнитной индукции.

  Напротив,  при убывании  магнитной индукции направление вектора напряженности образует правый винт с направлением вектора .

Направление силовых линий напряженности совпадает с направлением индукционного тока. Сила, действующая со стороны вихревого электрического поля на заряд q (сторонняя сила), по-прежнему равна = q. Но в отличие от случая стационарного электрического поля работа вихревого поля по перемещению заряда q на замкнутом пути не равна нулю.

Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению.

Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Индукционные токи в массивных проводниках. Особенно большого числового значения индукционные токи достигают в массивных проводниках, из-за того, что их сопротивление мало.

Такие токи, называемые токами Фуко по имени исследовавшего их французского физика, можно использовать для нагревания проводников.

На этом принципе основано устройство индукционных печей, например используемых в быту СВЧ-печей. Также этот принцип используется для плавки металлов. Кроме этого явление э.

пектромагнит-ной индукции используется в детекторах металла, устанавливаемых при входах в здания аэровокзалов, театров и т. д.

Однако во многих устройствах возникновение токов Фуко приводит к бесполезным и даже нежелательным потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д.

делают не сплошными, а состоящими из отдельных пластин, изолированных друг от друга. Поверхности пластин должны быть перпендикулярны направлению вектора напряженности вихревого электрического поля.

Сопротивление электрическому току пластин будет при этом максимальным, а выделение тепла — минимальным.

Применение ферритов. Радиоэлектронная аппаратура работает в области очень высоких частот (миллионы колебаний в секунду). Здесь применение сердечников катушек из отдельных пластин уже не дает нужного эффекта, так как большие токи Фуко возникают в каледой пластине.

В § 7 отмечалось, что существуют магнитные изоляторы — ферриты. При перемагничивании в ферритах не возникают вихревые токи. В результате потери энергии на выделение в них тепла сводятся к минимуму.

Поэтому из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов и др. Ферритовые сердечники изготовляют из смеси порошков исходных веществ.

Смесь прессуется и подвергается значительной термической обработке.

При быстром изменении магнитного поля в обычном ферромагнетике возникают индукционные токи, магнитное поле которых, в соответствии с правилом Ленца, препятствует изменению магнитного потока в сердечнике катушки. Из-за этого поток магнитной индукции практически не меняется и сердечник не перемагничивается. В ферритах вихревые токи очень малы, поэтому их можно быстро перемагничивать.

Наряду с потенциальным кулоновским электрическим полем существует вихревое электрическое поле. Линии напряженности этого поля замкнуты. Вихревое поле порождается  меняющимся магнитным полем.

1.    Какова природа сторонних сил, вызывающих появление индукционного тока в неподвижном проводнике!2.    В чем отличие вихревого электрического поля от электростатического или стационарного!3.    Что такое токи Фуко!4.    В чем преимущества ферритов по сравнению с обычными ферромагнетиками!

Мякишев Г. Я., Физика. 11 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с : ил.

Библиотека с учебниками и книгами на скачку бесплатно онлайн, Физика и астрономия для 11 класса скачать, школьная программа по физике, планы конспектов уроков

Содержание урока
конспект урока
опорный каркас презентация урока
акселеративные методы интерактивные технологии Практика
задачи и упражнения самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты Дополнения
рефераты
статьи фишки для любознательных шпаргалки учебники основные и дополнительные
словарь терминов прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей
идеальные уроки
календарный план на год методические рекомендации программы
обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Источник: http://edufuture.biz/index.php?title=%D0%92%D0%B8%D1%85%D1%80%D0%B5%D0%B2%D0%BE%D0%B5_%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BF%D0%BE%D0%BB%D0%B5

Ссылка на основную публикацию