Термоэлектричество, термоэлектродвижущая сила, термопары — справочник студента

Содержание статьи

ТЕРМОЭЛЕКТРИЧЕСТВО, явление прямого преобразования теплоты в электричество в твердых или жидких проводниках, а также обратное явление прямого нагревания и охлаждения спаев двух проводников проходящим током.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!

Оценим за полчаса!

Термин «термоэлектричество» охватывает три взаимосвязанных эффекта: термоэлектрический эффект Зеебека и электротермические эффекты Пельтье и Томсона. Все они характеризуются соответствующими коэффициентами, различными для разных материалов. Эти коэффициенты связаны между собой так называемыми соотношениями Кельвина.

Они определяются как параметрами спаев, так и свойствами самих материалов.

Другие явления, в которых участвуют теплота и электричество, такие, как термоэлектронная эмиссия и тепловое действие тока, описываемое законом Джоуля – Ленца, существенно отличаются от термоэлектрических и электротермических эффектов и здесь не рассматриваются. См. также ТЕПЛОТА; ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ; ТЕРМОДИНАМИКА.

Термоэлектрический эффект Зеебека.

В 1820 появилось сообщение Г.Эрстеда о том, что магнитная стрелка отклоняется вблизи провода с электрическим током. В 1821 Т.Зеебек отметил, что стрелка отклоняется также, когда два стыка замкнутой электрической цепи, составленной из двух разных проводящих материалов, поддерживаются при разной температуре. Зеебек сначала полагал, что это чисто магнитный эффект.

Но впоследствии стало ясно, что разность температур вызывает появление электрического тока в цепи (рис. 1). Важной характеристикой термоэлектрических свойств материалов, составляющих цепь, является напряжение на концах разомкнутой цепи (т.е. когда один из стыков электрически разъединен), так как в замкнутой цепи ток и напряжение зависят от удельного электросопротивления проводов.

Это напряжение разомкнутой цепи VAB(T1, T2), зависящее от температур T1 и T2 спаев (рис. 2), называется термоэлектрической электродвижущей силой (термо-ЭДС).

Зеебек заложил основы для дальнейших работ в области термоэлектричества, измерив термо-ЭДС широкого круга твердых и жидких металлов, сплавов, минералов и даже ряда веществ, ныне называемых полупроводниками.

alt

Узнай стоимость своей работы

Бесплатная оценка заказа!
Читайте также:  Аналитическая психология к.г. юнга - справочник студента

Оценим за полчаса!

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студентаТермоэлектричество, термоэлектродвижущая сила, термопары - Справочник студента

Электротермический эффект Пельтье.

В 1834 французский часовщик Ж.Пельтье заметил, что при прохождении тока через спай двух разных проводников температура спая изменяется. Как и Зеебек, Пельтье сначала не усмотрел в этом электротермического эффекта. Но в 1838 Э.Х.

Ленц, член Петербургской академии наук, показал, что при достаточно большой силе тока каплю воды, нанесенную на спай, можно либо заморозить, либо довести до кипения, изменяя направление тока. При одном направлении тока спай нагревается, а при противоположном – охлаждается.

В этом и состоит эффект Пельтье (рис. 3), обратный эффекту Зеебека.

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студента

Электротермический эффект Томсона.

В 1854 У.Томсон (Кельвин) обнаружил, что если металлический проводник нагревать в одной точке и одновременно пропускать по нему электрический ток, то на концах проводника, равноудаленных от точки нагрева (рис. 4), возникает разность температур.

На том конце, где ток направлен к месту нагрева, температура понижается, а на другом конце, где ток направлен от точки нагрева, – повышается. Коэффициент Томсона – единственный термоэлектрический коэффициент, который может быть измерен на однородном проводнике.

Позднее Томсон показал, что все три явления термоэлектричества связаны между собой уже упоминавшимися выше соотношениями Кельвина.

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студента

Термопара.

Если материалы цепи рис. 2 однородны, то термо-ЭДС зависит только от выбранных материалов и от температур спаев. Это экспериментально установленное положение, называемое законом Магнуса, лежит в основе применения т.н.

термопары – устройства для измерения температуры, которое имеет важное практическое значение. Если термоэлектрические свойства данной пары проводников известны и один из спаев (скажем, с температурой T1 на рис.

2) поддерживается при точно известной температуре (например, 0° C, точке замерзания воды), то термо-ЭДС пропорциональна температуре T2 другого спая.

Термопарами из платины и платино-родиевого сплава измеряют температуру от 0 до 1700° C, из меди и многокомпонентного сплава константана – от -160 до +380° C, а из золота (с очень малыми добавками железа) и многокомпонентного хромеля – до значений, лишь на доли градуса превышающих абсолютный нуль (0 К, или -273,16° C).

Термо-ЭДС металлической термопары при разности температур на ее концах, равной 100° C, – величина порядка 1 мВ.

Чтобы повысить чувствительность измерительного преобразователя температуры, можно соединить несколько термопар последовательно (рис. 5).

Получится термобатарея, в которой один конец всех термопар находится при температуре T1, а другой – при температуре T2. Термо-ЭДС батареи равна сумме термо-ЭДС отдельных термопар.

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студента

Поскольку термопары и их спаи могут быть выполнены небольшими и их удобно использовать в самых разных условиях, они нашли широкое применение в устройствах для измерения, регистрации и регулирования температуры.

Термоэлектрические свойства металлов.

Эффект Зеебека обычно легче других термоэлектрических эффектов поддается надежным измерениям. Поэтому его обычно и используют для измерения термоэлектрических коэффициентов неизвестных материалов.

Поскольку термо-ЭДС определяется свойствами обеих ветвей термопары, одна ветвь должна быть из некоего «опорного» материала, для которого известна «удельная» термо-ЭДС (термо-ЭДС на один градус разности температур).

Если одна ветвь термопары находится в сверхпроводящем состоянии, то ее удельная термо-ЭДС равна нулю и термо-ЭДС термопары определяется величиной удельной термо-ЭДС другой ветви. Таким образом, сверхпроводник – идеальный «опорный» материал для измерения удельной термо-ЭДС неизвестных материалов.

До 1986 самая высокая температура, при которой металл можно было поддерживать в сверхпроводящем состоянии, составляла лишь 10 К (-263° C). В настоящее время сверхпроводники можно использовать приблизительно до 100 К (-173° C).

При более высоких температурах приходится проводить измерения с несверхпроводящими опорными материалами. До комнатной и несколько более высоких температур опорным материалом обычно служит свинец, а при еще более высоких – золото и платина. См. также СВЕРХПРОВОДИМОСТЬ.

Эффект Зеебека в металлах имеет две составляющие – одна из них связана с диффузией электронов, а другая обусловлена их фононным увлечением.

Диффузия электронов вызывается тем, что при нагревании металлического проводника с одного конца на этом конце оказывается много электронов с высокой кинетической энергией, а на другом – мало.

Электроны с высокой энергией диффундируют в сторону холодного конца до тех пор, пока дальнейшей диффузии не воспрепятствует отталкивание со стороны избыточного отрицательного заряда накопившихся здесь электронов. Этим накоплением заряда и определяется компонента термо-ЭДС, связанная с диффузией электронов.

Компонента, связанная с фононным увлечением, возникает по той причине, что при нагревании одного конца проводника на этом конце повышается энергия тепловых колебаний атомов.

Колебания распространяются в сторону более холодного конца, и в этом движении атомы, сталкиваясь с электронами, передают им часть своей повышенной энергии и увлекают их в направлении распространения фононов – колебаний кристаллической решетки.

Соответствующим накоплением заряда определяется вторая компонента термо-ЭДС.

Оба процесса (диффузия электронов и их фононное увлечение) обычно приводят к накоплению электронов на холодном конце проводника. В этом случае удельная термо-ЭДС по определению считается отрицательной.

Но в некоторых случаях из-за сложного распределения числа электронов с разной энергией в данном металле и из-за сложных закономерностей рассеяния электронов и колеблющихся атомов в столкновениях с другими электронами и атомами электроны накапливаются на нагреваемом конце, и удельная термо-ЭДС оказывается положительной.

Наибольшие термо-ЭДС характерны для термопар, составленных из металлов с удельными термо-ЭДС противоположного знака. В этом случае электроны в обоих металлах движутся в одном и том же направлении.

Термоэлектрические свойства полупроводников.

В 1920–1930-х годах ученые обнаружили ряд материалов с низкой проводимостью, ныне называемых полупроводниками, удельные термо-ЭДС которых в тысячи раз больше, чем у металлов.

Поэтому полупроводники в большей степени, чем металлы, подходят для изготовления термобатарей, от которых требуются большие термо-ЭДС либо интенсивное термоэлектрическое нагревание или охлаждение.

Как и в случае металлов, термо-ЭДС полупроводников имеют две составляющие (связанные с диффузией электронов и с их фононным увлечением) и могут быть отрицательными или положительными. Наилучшие термобатареи получаются из полупроводников с термо-ЭДС противоположного знака.

Термоэлектрические приборы.

Если создать хороший тепловой контакт одной группы спаев термобатареи с каким-либо источником теплоты, например небольшим количеством радиоактивного вещества, то на выходе термобатареи будет вырабатываться напряжение.

Читайте также:  Виды представлений - справочник студента

КПД преобразования тепловой энергии в электрическую в таких термоэлектрических генераторах достигает 16–17% (для паротурбинных электростанций тепловой КПД составляет 20–40%).

Термоэлектрические генераторы находят применение в удаленных точках на Земле (например, в Арктике) и на межпланетных станциях, где от источника питания требуются большая долговечность, малые размеры, отсутствие движущихся механических деталей и пониженная чувствительность к условиям окружающей среды.

Можно также, присоединив к зажимам термобатареи источник тока, пропускать через ее термоэлементы ток. Одна группа спаев термобатареи будет нагреваться, а другая – охлаждаться. Таким образом, термобатарею можно использовать либо как термоэлектрический нагреватель (например, для бутылочек с детским питанием), либо как термоэлектрический холодильник. См. также ХОЛОДИЛЬНАЯ ТЕХНИКА.

Эффективность термоэлементов для термоэлектрических генераторов оценивается сравнительным показателем качества

Z = (S2sT)/k,

где T – температура, S – удельная термо-ЭДС, k – удельная теплопроводность, а s – удельная электропроводность. Чем больше S, тем больше термо-ЭДС при данной разности температур. Чем больше s, тем больше может быть ток в цепи. Чем меньше k, тем легче поддерживать необходимую разность температур на спаях термобатареи.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/TERMOELEKTRICHESTVO.html

Термоэлектрические преобразователи (термопары)

Разместить публикацию Мои публикации Написать Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студента

Принцип работы термопары

Еще в 1821 г. Зеебеком было открыто явление, названное его именем, заключающееся в том. что в состоящей из разных проводниковых материалов замкнутой цепи появляется э. д. с. (так называемая термо-э. д. с), если места контакта этих материалов поддерживаются при разных температурах.

В простейшем виде, когда электрическая цепь состоит из двух различных проводников, она носит название термоэлемента, или термопары.

Сущность явления Зеебека заключается в том, что энергия свободных электронов, обусловливающих возникновение электрического тока в проводниках, различна и по-разному изменяется с температурой.

Поэтому если вдоль проводника имеется перепад температур, на его горячем конце электроны будут иметь большие энергии и скорости по сравнению с холодным, что обусловит возникновение в проводнике потока электронов от горячего конца к холодному.

В результате на обоих концах будут накапливаться заряды — отрицательный на холодном и положительный на горячем.

Так как у разных проводников эти заряды различны, то при соединении двух из них в термоэлемент появится разностная термо-э. д. с. Для анализа проходящих в термоэлементе явлений удобно считать, что образующаяся в нем термо-э. д. с. Е является суммой двух контактных электродвижущих сил е, возникающих в местах их контакта и являющихся функцией температуры этих контактов (рис. 1,а).

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студента

Рис. 1.Схема термоэлектрической цепи из двух и трех проводников, схема включения электроизмерительного прибора в спай и термоэлектрод термопары.

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студента

Термоэлектродвижущая сила, возникающая в цепи из двух разнородных проводников, равна разности электродвижущих сил на их концах.

Из этого определения следует, что при равенстве температур на концах термоэлемента его термо-э. д. с. будет равна нулю. Отсюда может быть сделан чрезвычайно важный вывод, обусловливающий возможность использования термопары, как датчика для измерения температуры.

Этот третий проводник может быть включен как в один из спаев, так и в разрез одного из проводников (рис. 1,6,в). Этот вывод может быть распространен и на несколько проводников, вводимых в цепь термопары, лишь бы температуры на их концах были одинаковы.

Поэтому в цепь термопары можно включить измерительный прибор (также состоящий из проводников) и ведущие к нему соединительные провода, не вызвав изменения развиваемой ею термо-э. д.

с, если только температуры точек 1 и 2 или 3 и 4 (рис. 1, г и д) будут равны.

При этом температура этих точек может отличаться от температуры на выводах прибора, но температура обоих выводов должна быть одинакова.

Если сопротивление цепи термопары будет оставаться неизменным, то проходящий в ней ток (а следовательно, и показание прибора) будет зависеть только от развиваемой ею термо-э. д. с, т. е. от температур рабочего (горячего) и свободного (холодного) ее концов.

Далее, если поддерживать неизменной температуру свободного конца термопары, показание прибора будет зависеть только от температуры рабочего конца термопары. Такой прибор будет показывать непосредственно температуру рабочего спая термопары.

Таким образом, термоэлектрический пирометр состоит из термопары (термоэлектродов), электроизмерительного прибора постоянного тока и соединительных проводов.

Из вышесказанного можно сделать следующие выводы.

  1. Способ изготовления рабочего конца термопары (сварка, пайка, скрутка и т. д.) не влияет на развиваемую ею термо-э. д. с, если только размеры рабочего конца таковы, что температура во всех его точках одинакова.
  2. Так как параметром, измеряемым прибором, является не термо- э. д. с, а ток цепи термопары, не обходимо, чтобы сопротивление цепи в эксплуатации оставалось неизменным и равным его значению при градуировке. Но так как осуществить это практически невозможно потому, что сопротивление термоэлектродов и соединительных проводов меняется с изменением температуры, возникает одна из принципиальных погрешностей метода: погрешность от несоответствия сопротивления схемы ее сопротивлению при градуировке. Для уменьшения этой погрешности приборы для тепловых измерений выполняются высокоомными (50—100 Ом при грубых измерениях, 200—500 Ом при более точных) и с малым температурным электрическим коэффициентом, с тем чтобы суммарное сопротивление схемы (а следовательно, и связь между током и термо-э. д. с.) менялось в минимальной степени при колебаниях окружающей температуры.
  3. Термоэлектрические пирометры градуируются всегда при вполне определенной температуре свободного конца термопары — при 0°С. Обычно в работе эта температура отличается от градуировочной, в результате этого возникает вторая принципиальная погрешность метода: погрешность на температуру свободного конца термопары.

Так как эта погрешность может достигать десятков градусов, то необходимо в показания прибора вносить соответствующую поправку. Эта поправка может быть высчитана, если известна температура свободных концов.

Так как температура свободного конца термопары при градуировке to равна 0°С, а в эксплуатации она, как правило, выше 0°С (свободные концы находятся обычно в помещении, часто они расположены близко к печи, температура которой замеряется), то пирометр дает заниженное против действительной измеряемой температуры показание и значение последнего надо увеличить на величину поправки.

Обычно это осуществляется графическим путем. Это вызывается тем, что обычно отсутствует пропорциональность между термо-э. д. с. и температурой. Если же зависимость между ними пропорциональная, то градуировоч-ная кривая представляет прямую линию и в этом случае поправка на температуру свободного конца термопары будет равна непосредственно его температуре.

Конструкция и типы термопар

К материалам для термоэлектродов предъявляются следующие требования:

  1. высокая термо-э. д. с. и близкий к пропорциональному характер ее изменения от температуры;
  2. жаростойкость (неокисляемость при высоких температурах);
  3. неизменяемость физических свойств с течением времени в пре делах измеряемых температур;
  4. высокая электрическая проводимость;
  5. малый температурный коэффициент сопротивления;
  6. возможность производства в больших количествах с неизменными физическими свойствами.

В настоящее время применяются следующие стандартные термопары.

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студентаПлатинородий-платиновая термопара. Эти термопары могут быть применены для измерения температур до 1300°С при длительном применении и до 1600 °С при кратковременном, при условии их использования в окислительной газовой среде. При средних температурах платинородий-платиновая термопара зарекомендовала себя как очень надежная и стойкая, поэтому она применяется как образцовая в интервале 630 — 1064°С.

Хромель-алюмелевая термопара. Эти термопары предназначены для измерения температур при длительном применении до 1000 °С и при кратковременном — до 1300°С.

Они надежно работают в этих пределах в окислительной атмосфере (если отсутствуют агрессивные газы), так как на поверхности электродов при нагреве образуется тонкая защитная пленка окислов, препятствующая проникновению кислорода в металл.

Хромель-копелевая термопара. Эти термопары позволяют измерять температуры длительно до 600°С и кратковременно до 800 °С. Они успешно работают как в окислительной, так и в восстановительной атмосфере, а также в вакууме.

Железо-копелевая термопара. Пределы измерений — те же, что и хромель-копелевых термопар, условия работы — такие же. Она дает меньшую термо-э. д. с. по сравнению с термопарой ХК: 30,9 мВ при 500 °С, но ее зависимость от температуры ближе к пропорциональной. Существенным недостатком термопары ЖК является коррозия ее выполненного из железа электрода.

Медь-копелевая термопара. Так как медь в окислительной атмосфере начинает интенсивно окисляться уже при 350°С, то пределы применимости этих термопар — 350 °С длительно и 500 °С кратковременно. В вакууме эти термопары можно применять до 600 °С.

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студента

Сопротивление термоэлектродов стандартных термопар из неблагородных металлов составляет 0,13 — 0,18 Ом на 1 м длины (в оба конца), для платинородий-платиновых термопар 1,5—1,6 Ом на 1 м. Допустимые отклонения термо-э. д. с. от градуировочных для неблагородных термопар составляют ±1%, для платинородий-платиновых ±0,3—0,35%.

Стандартная термопара представляет собой жезл диаметром 21—29 мм и длиной 500 — 3000 мм.

На верхней части защитной трубы надета штампованная или литая (обычно из алюминия) головка с карболитовой или бакелитовой пластиной, в которую запрессованы две пары выводов с винтовыми зажимами, соединенные попарно; в один из выводов зажат термоэлектрод, к другому присоединен соединительный провод, ведущий к измерительному прибору.

Иногда соединительные провода заключаются в гибкий защитный шланг. При необходимости герметизировать отверстие, в котором устанавливается термопара, последняя снабжается штуцером с резьбой. Для ванн термопары выполняются также коленчатой формы.

838

Закладки

Источник: https://energoboard.ru/post/1571/

Термопары: устройство и принцип работы простым языком, типы

В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки.

Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений.

В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.

Устройства также являются простым и удобным датчиком температуры для термоэлектрического термометра, предназначенного для осуществления точных измерений в пределах довольно широких температурных диапазонов.

В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары.

Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык.

Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай.

Схематически устройство изображено на рисунке 1.

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студентаРис. 1. Схема строения термопары

Красным цветом выделено зону горячего спая, синим – холодный спай.

Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студентаРис. 2. Термопара с керамическими бусами

Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС.

Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает.

Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студентаРис. 3. Измерение напряжения на проводах ТП

Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки.

Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки.

Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар. Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.

В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не  такие жёсткие и погрешность может быть на порядок ниже.

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студентаРис. 4. Решение вопроса точности показаний термопар

На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.

Типы термопар и их характеристики

Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:

  • ТПП13 – платинородий-платиновые (тип R);
  • ТПП10 – платинородий-платиновые (тип S);
  • ТПР – платинородий-платинродиевые (тип B);
  • ТЖК – железо-константановые (тип J);
  • ТМКн – медь-константановые (тип T);
  • ТНН – нихросил-нисиловые (тип N);
  • ТХА – хромель-алюмелевые (тип K);
  • ТХКн – хромель-константановые (тип E);
  • ТХК – хромель-копелевые (тип L);
  • ТМК – медь-копелевые (тип M);
  • ТСС – сильх-силиновые (тип I);
  • ТВР – вольфрамрениевые (типы A-1 – A-3).
Читайте также:  Скорость света в однородных изотропных диэлектриках - справочник студента

Источник: https://www.asutpp.ru/termopary.html

Термопара — термоэлектрический преобразователь. Теория, устройство, характеристики, принцип работы термопар

Термоэлектрические преобразователи — термопары, как и термопреобразователи сопротивления, являются наиболее распространенными средствами измерения температуры.

Термоэлектрический метод измерения температуры  основан на зависимости термоэлектродвижущей силы (термоЭДС), развиваемой термопарой от температуры ее рабочего конца. ТермоЭДС возникает в цепи, составленной из двух разнородных проводников (электродов) А и В (рис.

1, а), если значения температуры мест соединения t и t0 не равны (при равенстве температур термоЭДС равна нулю). Возникающая в цепи термопары ЭДС является результатом действия эффектов Зеебека и Томпсона. Первый связан с появлением ЭДС в месте спая двух разнородных проводников, причем величина ЭДС зависит от температуры спая.

Эффект Томпсона связан с возникновением ЭДС в однородном проводнике при наличии разности температур на его концах.

Развиваемая термоЭДС зависит от значения обеих температур t и t0, причем она увеличивается с ростом разности (t — t0). В силу этого термоЭДС термопары условно обозначается символом E(t, t0).

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студента

Рис. 1. Цепи термопар:

  • а — соединение двух проводников; б, в — варианты включения третьего проводника; г, д варианты включения измерительного прибора ИП
  • Очевидно, что температуру с помощью термопары можно измерить, если выполнить следующие условия:
  • •             рабочий конец термопары поместить в контролируемую среду, а температуру другого спая (свободных концов) стабилизировать;
  • •             измерить термоЭДС, развиваемую термопарой;

•             иметь градуировочную характеристику E(t, t0) термопары — зависимость термоЭДС от температуры рабочего конца (т.е. измеряемой температуры) при определенном значении t0.

Для понимания дальнейшего материала обратимся к «теореме о третьем проводнике». Суть ее (без доказательства) следующая: включение в цепь термопары третьего проводника из любого материала «С» (на всех схемах он изображен волнистой линией) не вызывает искажения термоЭДС, если температуры мест присоединения этого проводника одинаковы.

Поэтому термоЭДС, развиваемые в схемах (рис. 1, б, в), будут одинаковыми, если только будут равны между собой температуры t' и t», т.е. при соблюдении условия t' = t». На основании изложенного можно представить два способа включения измерительного прибора (ИП) в цепь термопары: в разрыв свободных концов (рис.

1, г) или в разрыв электрода (рис. 1, д).

Два любых разнородных проводника могут образовать термопару, но не любая термопара может использоваться для практических температурных измерений.

К материалам для термопар (термоэлектродным материалам) предъявляется ряд требований: жаропрочность, химическая стабильность, воспроизводимость материалов (для обеспечения взаимозаменяемости термопар), заключающаяся в одинаковой зависимости термоЭДС термопары от температуры.

Теперь обратимся к терминологии. Термопара — это соединение двух разнородных проводников — электродов. Для практического использования термопары ее электроды должны быть изолированы и помещены в защитную арматуру.

Такая конструкция называется термоэлектрическим преобразователем.

По определению «термоэлектрический преобразователь» (ТЭП) — это термопреобразователь, действие которого основано на зависимости термоэлектродвижущей силы термопары от температуры.

  1. Термопара является основным элементом средств измерения температуры — термоэлектрических преобразователей (ТЭП).
  2. В соответствии с ГОСТ Р50431-92 в табл. 1 приведены пределы длительного (кратковременного) применения для различных термопар ТЭП, имеющих следующие обозначения:
  3. ТВР (А) — вольфрамрений-вольфрамрениевые;
  4. ТПР (В) — платинородий-платинородиевые;
  5. ТПП (S, R) — платинородий платиновые;
  6. ТХА (К) — хромель-алюмелевые;
  7. TXK (L) — хромель-копелевые;
  8. ТХК (Е) — хромель-константановые;
  9. THH (N) — никросил-нисиловые;
  10. ТМК (T) — медь-константановые;
  11. ТЖК (J) — железо-константановые.
  12. Таблица 1
  13. Стандартные термоэлектрические преобразователи — термопары
Подгруппа ТЭП (термопары) Условное обозначение НСХ Диапазон длительного (кратковременного) применения, °С Коэффициент преобразования мВ/°С * 103
ТВР
  • ВР(А)-1 (А-1)
  • ВР(А)-2 (А-2)
  • ВР(А)-3(А3)
0…2200 (2500)0…1800 (2500)0…1800 (2500) 12,1…9,211,8…11,411,9…11,3
ТПР ПР(В) 300…1600 (1800) 3,1…5,9
ТПП ПП(S)ПП(R) 0…1300 (1600)0…1300 (1600) 5,5…12,15,4…14,1
ТХА ХА(К) -200…1000 (1300) 16,1…39,0
ТХК ХК(L)ХК (E) -200…600 (800)-200…700 (900) 28,5…87,826,3…79,8
ТНН HH(N) -270…1300(1300) 0,9…36,2
ТМК МК(T) -200…700 (900) 16,4…61,7
ТЖК ЖК (J) -200…700 (900) 23,1…62,0

Зависимость развиваемой термопреобразователем термоЭДС от температуры рабочего спая t при нулевой температуре свободных концов t0 = 0 °С (т.е. E(t,0) = f(t)) называется номинальной статической характеристикой преобразования (НСХ). Она задается в виде таблиц (градуировочных) или формул и обозначается условным символом в русском и международном обозначении.

В соответствии с ГОСТ Р50431-92 в настоящее время для обозначения НСХ должны использоваться только латинские буквы (приведены в скобках).

В обозначениях преобразователей первым указывается положительный электрод (например, у преобразователя термопары ТХК положительный электрод — хромелевый, отрицательный — копелевый). На условных графических изображениях положительный электрод обозначается тонкой линией, отрицательный — толстой. При небольших диаметрах электродов верхний предел измерения может быть уменьшен.

Термопреобразователь (термопара) ТПР (В) не развивает термоЭДС, если температура рабочего спая не превышает 300 °С (при температуре свободных концов 0 °С). Зависимости термоЭДС от температуры для термопар нелинейны, поэтому в пределах диапазона применения изменяется их коэффициент преобразования (чувствительность). В табл.

1 приведены округленные значения чувствительности в начале и конце диапазона применения.

Существуют другие разновидности термопреобразователей, статические характеристики которых могут быть не стандартизованы: например, сплав молибдена с рением MP 5/20, термопары на основе неметаллических материалов — графита и тугоплавких соединений (карбидов, нитридов и т.п.)

В табл. 2 и на рис. 2, а приведены статические характеристики термопар ХА, ХК, ПП. Из графиков видно, что наибольшую термоЭДС развивает термопара ХК, наименьшую (из этих трех) термопара ПП. Поэтому при невысоких температурах целесообразнее использовать термопреобразователи типа ТХК.

Таблица 2

Номинальные статические характеристики термоэлектрических преобразователей  (термопар)

t °с ТЭП, Е, мВ t °С ТЭП, Е, мВ
ПП(S) ХА(К) ХК(L) ПП(S) ХА(К) ХК(L)
-240 -6,344 650 5,751 27,022 53,484
-200 -5,892 -9,488 700 6,274 29,128 57,856
-160 -5,141 -8,207 750 6,805 31,214 62,200
-120 -4,138 -6,575 800 7,345 31,277 66,469
-80 -2,92 —4,431 850 7,892 35,314
-40 -1,527 -2,500 900 8,448 37,325
0,000 0,000 0,000 950 9,012 39,310
50 0,299 2,022 3,306 1000 9,585 41,269
100 0,645 4,095 6,860 1050 10,165 43,202
150 1,029 6,137 10,621 1100 10,754 45,108
200 1,440 8,137 14,557 1150 11,348 46,985
250 1,873 10,151 18,639 1200 11,947 48,828
300 2,323 12,207 22,839 1250 12,550 50,633
350 2,786 14,292 27,132 1300 13,155 52,398
400 3,260 16,395 31,488 1400 14,368
450 3,743 18,513 35,882 1500 15,576
500 4,234 20,640 40,292 1600 16,771
550 4,732 22,772 44,700 1700 17,942
600 5,237 24,902 49,098

Термоэлектричество, термоэлектродвижущая сила, термопары - Справочник студента

Рис. 2. Номинальные статические характеристики преобразователей (я), схема изготовления рабочего спая (б) и способы измерения температуры пластины (в)

Наиболее линейная характеристика у термопар ХА. Наиболее точной из этих трех является термопара ПП.

Отклонение реальной градуировочной характеристики от номинальной определяются классом термоэлектрических преобразователей (термопар).

Классы обозначаются цифрами 1, 2, 3 (в порядке увеличения погрешности), причем внутри класса погрешность может зависеть от измеряемой температуры (табл. 3).

Коэффициентом преобразования (чувствительностью) термопары называется отношение изменения термоЭДС, вызванной изменением температуры рабочего конца к значению этого изменения S = ΔE/Δt (мВ/град) при небольших значениях Δt.

Для получения численных значений измеряемой температуры к термопреобразователю необходимо подключить показывающий прибор, измеряющий термоЭДС термопары (вторичный прибор), шкала которого должна быть в градусах. Такое соединение называется термоэлектрическим термометром. В дальнейшем будут использоваться все эти термины.

Чтобы температурная шкала вторичного прибора была равномерной, желательно, чтобы коэффициент преобразования термопары (преобразователя) S не зависел бы от измеряемой температуры t в пределах диапазона измерения, в противном случае возникает необходимость в применении линеаризации.

При оценке зависимости S = f(t) температурный интервал Δt в выражении S = ΔE/Δt следует брать возможно малым — теоретически нужно использовать производную S = dE/dt.

Вернемся к «теореме о третьем проводнике» — включение в цепь термопары «АВ» третьего проводника «С» из любого материала не вызовет искажений термоЭДС, если температуры мест присоединения этого проводника одинаковы.

Из этой теоремы вытекает ряд важных практических положений. Рабочий спай термопары может быть образован сваркой любым материалом, если только температура во всех точках сварного слоя будет одинаковой (рис. 2, б).

Таблица 3

Пределы допускаемых отклонений для температуры t

Подгруппа ТП термопар Класс точности Диапазон измеряемых температур, °С Предел допускаемых отклонений ± Δt, °С
ТМК(Т)
  1. 3
  2. 2
  3. 1
-200…-66-66…40-40… 135135…400-40. ..125125…350
  • 0,015*|t|
  • 1,0
  • 1,0
  • 0,0075*|t|
  • 0,5
  • 0,004*|t|
ВР(А) 32 1000…25501000…2550 0,007*|t|0,005*|t|
ТПР(В) 32 600… 800800…1800600… 1800
  1. 4,0
  2. 0,005*|t|
  3. 0,0025*|t|
ТПП(S,R) 21 0…600600… 16000…1100 1100…1600
  • 1,5
  • 0,0025*|t|
  • 1,0
  • 1,0 + 0,003(t — 1100)
ТХА(К)ТНН(Н)
  1. 3
  2. 2
  3. 1
-250…-166,7-166,7…40-40…333,4333,4…1350-40…375375…1350
  • 0,015*|t|
  • 2,5
  • 2,5
  • 0,0075*|t|
  • 0,5
  • 0,004*|t|
TXK(L) 32 -200…-100-100… 100-40… 300300…800
  1. 0,015*|t|
  2. 2,5
  3. 2,5
  4. 0,7 + 0,005*|t|
ТХК(E)
  • 3
  • 2
  • 1
-200…-166,7-166,7…-40-40…333,4 333,4…900-40…375375…800
  1. 0,015*|t|
  2. 2,5
  3. 2,5
  4. 0,0075*|t|
  5. 1,5
  6. 0,004*|t|
ТЖК(J) 2 -40…333,4333,4…900 2,50,0075*|t|
1 -40…375375…750 1,50,004*|t|

Источник: https://eti.su/articles/izmeritelnaya-tehnika/izmeritelnaya-tehnika_503.html

Термоэлектрический эффект Зеебека. Область применения эффекта

Эффект Зеебека(другое название – термоэлектрический эффект)— явление образования электродвижущей силы внутри замкнутой электропроводящей цепи, сформированной разнородными проводниками (изготовленными из ТЭМ) с помощью последовательного соединения и разницы в температуре на спаях. Обратный данному эффекту носит название эффекта Пельтье.

К числу термоэлектрических материалов (ТЭМ) относят сплавы, обладающие свойствами полупроводников, а также варианты химических соединений со значимыми термоэлектрическими параметрами, а потому подходящие для применения в конструкции термоэлектрических устройств. Есть три базовых варианта использования ТЭМ, в том числе для конструирования:

  • Термоэлектрических генераторов;
  • Термоэлектрических холодильников;
  • Измерителей температур (в диапазоне от абсолютного нуля до тысяч градусов по Кельвину).

Согласно опытам, в условиях незначительной температурной разницы между спаями термоэлектродвижущая сила в пропорциональном отношении сопоставима с разностью температур элементов, составляющих цепь.

Кроме того, любая диада с однородными проводниками, работающими в соответствии с законом Ома, обладает величиной термоэлектродвижущей силы, определяемой только качествами проводящих материалов и разностью температур, независимо от того, как эти температуры распределены между контактами.

Термопара

Если для формирования цепи использовались всего два различных проводника, то эта комбинация носит название термоэлемента или термопары. То, насколько высоким будет уровень термо-электродвижущей силы, определяется тем из каких материалов сделаны проводники и разница между температурами контактов.

Термопары применяются в основном для определения температур.

Чтобы производить измерение температурных значений вплоть для 1400 градусов по Кельвину, будет вполне достаточно применить неблагородные материалы, для измерителей с диапазоном до 1900 градусов будут нужны металлы, относящиеся к платиновой группе, а специальные особо сильные измерители изготавливаются из специальных жаростойких сплавов.

Наиболее обширно распространились модули типа хромель-алюмень. Они оптимальны для работы в окислительных средах, потому как во время нагревания на их поверхности образуется защитное покрытие из оксилов, что не даёт кислороду проникать внутрь сплава. В восстановительной среде эффект становится строго противоположным.

Термоэлектрические генераторы

Термоэлектрические генераторы применяются для того, чтобы с их непосредственной помощью преобразовывать тепловую энергию в электрическую.

Их работа в большинстве своём также построена на эффекте Зеебека, который может обеспечить даже преобразование сбросовой тепловой энергии, выделяемой двигателем машины, в форму энергии электрической, которую тут же можно направлять на подпитку разнообразных устройств.

Подобные генераторы выгодно отличаются тем, что:

  • Гарантируют длительность срока службы без каких-либо проблемных моментов, а также отсутствие ограничений для хранения в неактивном состоянии;
  • Характеризуются устойчивым режимом работы, ликвидирую риск возникновения короткого замыкания;
  • Работают совершенно бесшумно, поскольку их конструкция не включает никаких подвижных элементов.

Благодаря своим свойствам эти генераторы активно используются в труднодоступных точках планеты, в местах с повышенными требованиями к устойчивости работы генератора и во многих отношениях являются просто незаменимыми.

Сферы применения эффекта Зеебека

Одно из значимых ограничений, возникающих при использовании термоэлектрического преобразователя, заключается в низком коэффициенте эффективности – 3-8%.

Но если нет возможности для проведения стандартных линий электропередач, а нагрузки на сеть предполагаются небольшие, тогда применение термоэлектрических генераторов вполне оправдано.

На самом деле, устройства, работающие на эффекте Зеебека, могут применяться в самых различных сферах:

  • Энергообеспечение космической техники;
  • Питание газо- и нефте- оборудования;
  • Бытовые генераторы;
  • Системы морской навигации;
  • Отопительные системы;
  • Эксплуатация отводимого автомобильного тепла;
  • Преобразователи солнечной энергии;
  • Преобразователи тепла, вырабатываемого природными источниками (например, геотермальными водами).

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик, буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала

Источник: https://zen.yandex.ru/media/id/5c615e3c9e391400ae5f8253/5d3734e56f5f6f00adc2a8dc

Ссылка на основную публикацию